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Abstract 

In recent years, high performance computing with commodity clusters of personal 

computers has become an active area of research. Many organizations build them because 

they need the computational speedup provided by parallel processing but cannot afford to 

purchase a supercomputer. 

With commercial supercomputers and homogenous clusters of PCs, applications 

that can be statically load balanced are done so by assigning equal tasks to each processor. 

With heterogeneous clusters, the system designers have the option of quickly adding 

newer hardware that is more powerful than the existing hardware. When this is done, the 

assignment of equal tasks to each processor results in suboptimal performance. 

This research addresses techniques by which the size of the tasks assigned to 

processors is a suitable match to the processors themselves, in which the more powerful 

processors can do more work, and the less powerful processors perform less work. We 

find that when the range of processing power is narrow, some benefit can be achieved with 

asymmetric load balancing. When the range of processing power is broad, dramatic 

improvements in performance are realized - our experiments have shown up to 92% 

improvement when asymmetrically load balancing a modified version of the NAS Parallel 

Benchmarks' LU application. 
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/„   Introduction 

Traditionally, supercomputers are designed with the objective of achieving the 

greatest computational performance physically possible; the the U.S. Department of 

Energy's (DoE) Accelerated Strategic Computing Initiative (ASCI) [23] is the current 

embodiment of this niche. At the other extreme has been low-cost computer designs, 

where the performance is subordinate to the end-user price; commodity personal 

computers (PC) traditionally filled this role. Between the two lay the designs that focus 

on the price/performance ratio, exemplified by scientific workstations [35:17]. Advances 

in the performance of commodity PCs and commodity networks without corresponding 

increases in price led to the discovery that supercomputing performance can be realized 

with clusters of PCs, at a price/performance ratio an order of magnitude better than is 

possible with typical supercomputers [85]. The AFIT Bimodal Cluster (ABC) is one such 

system. 

1.1.  The AFIT Bimodal Cluster 
In the spring of 1998, motivated by AFIT's previous experience with networks of 

workstations (NOWs) [31][102] and by the Beowulf Project [53][72][84][85][94], a 

group of AFIT students under the direction of Professor Gary Lamont began construction 

on the AFIT Bimodal Cluster for computer architectural research. Such an effort 

indirectly supports the US National Science Foundation (NSF) Grand Challenge problems 

[60] and the Department of Defense High Performance Computing Modernization (DoD 

HPCM) Computational Technology Areas (CTAs) [38]. 



The ABC is a "Pile of Personal Computers" (PoPC) that operates under both 

Windows NT and Linux operating systems (OS) and is intended to evolve over time as 

additional hardware and software became available. The inaugural parallel code ran on the 

evening of 19 May 1998 using four 333 MHz Intel Pentium II uniprocessor nodes 

interconnected with a 100BaseT Fast Ethernet hub. 

Figure 1-1. The AFIT Bimodal Cluster, as of 5 Jan 99. 



An early decision was that future expansion of the ABC would not be limited due 

to previous design decisions; as such, the ABC's hardware would be heterogeneous. 

Since the project was begun, the ABC has grown to twelve nodes, including the original 

four, six 400 MHz Pentium IIs, a 450 MHz Pentium II, and a 200 MHz Pentium; further, 

the Fast Ethernet hub has been replaced with a Fast Ethernet switch (Figure 1-1). A 

detailed description and development discussion of the ABC can be found in Sections 2.2 

and 3.1. 

A consequence of this decision is that the performance realized by newer hardware 

would be limited by the performance the older hardware could offer. If workloads were 

matched to the processors' capabilities, then this limitation would be overcome and the 

older hardware would continue to be able to contribute to the solution of computational 

challenges. In this fashion, obsolescence of older technologies would be delayed, further 

reducing the cost of high performance computing. 

1.2. Research Overview 

1.2.1. Rationale 
One field of study that includes both Grand Challenge and CTA efforts is 

computational fluid dynamics (CFD) [5] [36]. CFD has a number of research priorities 

that include parallel processing and turbulence modeling [2]. In particular, the CFD 

investigation of turbulence induced by surface roughness in high-speed airflows using both 

1 "Heterogeneous" has different connotations, ranging from different underlying architectures to different 
user loads. In the context of this thesis, the ABC is heterogeneous in that the nodes have processors 
clocked at different rates, that the nodes have different implementations of the Intel Architecture 
instruction set (IA), and that the memories are different sizes and are clocked at different rates. The ABC 
is also heterogeneous in that two distinct operating systems are used, though only Linux is within the 
scope of this thesis effort. 



windtunnels and CFD modeling is a current area of research at AFIT in the Department of 

Aeronautics and Astronautics. These researchers are addressing the critical high-speed 

CFD problem where existing CFD high-speed turbulence models are incorrect. This is 

because the nondeterministic nature of turbulence has led to time-averaged analysis, rather 

than instantaneous analysis, and further, the data for high-speed turbulence generally is 

extrapolated from low-speed incompressible turbulence models [49:1-6]. 

1.2.2. Objectives 

The research described in this document is not intended to advocate the use of 

PoPCs en lieu of commercial supercomputers. Rather, given that commodity clusters of 

PCs do exist, we address the issue of how to make more efficient use of these clusters. As 

a point of comparison, though, we do cite some reported results of our test application on 

other platforms. 

Likewise, this thesis effort does not address any new mathematical modeling 

techniques in the CFD realm, but rather supports CFD research by establishing 

computational techniques to make more optimal use of a PoPC. In particular, this effort 

focuses on optimizing a specific CFD application on the ABC and on heterogeneous 

parallel architectures in general. 

In the interest of focusing on the parallel architecture problem and not on the fluid 

dynamics problem, we make use of a well-known CFD benchmark [99] [10], described in 

Section 2.3. The use of a CFD problem domain is entirely appropriate, as the technique 

used for computational fluid dynamics is applicable to other problem domains as well. 

These other problem domains not only include problems solved similarly to CFD, such as 



computational electromagnetics [3] [37], but also any data-decomposed supercomputing 

problem. The benchmark used in this thesis effort is appropriate since it is designed 

specifically to mimic the computation and communication patterns of computational fluid 

dynamics applications [75:2]. 

Thus, the specific objectives of this research are: 

a) Develop an algorithm to modify the static partitioning of a data-decomposed parallel 

application at run-time from a symmetric decomposition to an asymmetric 

decomposition; 

b) Develop techniques to measure the relative computational capabilities of the nodes in a 

heterogeneous cluster of PCs; 

c) Incorporate the algorithm and measurement software into a CFD application; 

d) Provide a statistical analysis of the resulting performance and a comparison with other 

platforms. 

As a result of this research, future computational scientists should be able to take 

advantage of the capabilities of the newest technologies while still using older 

technologies. This, in turn, delays the obsolescence of equipment in a field where 

capabilities double every eighteen months.2 

1.2.3. Approach 

The first step in this journey was the construction of the ABC PoPC. The author 

of this document undertook the responsibility of the physical construction, and he was 

2 Generally speaking, Moore's Law is invoked when expressing the fact that computer systems improve at 
an exponential rate. More specifically, Moore's Law states that the logic capacity of silicon doubles about 
every 18 months, and the law has often been extended to include microprocessor performance [40] [67]. 



assisted by the other students in the project. The author also assumed responsibility as the 

Linux system administrator, learning this role along the way. 

The next task was the selection of the CFD application on which to test the 

heterogeneous load balancing algorithm, detailed in Section 3.2. Studying the design of 

the application was necessary to understand the assumptions implicit in its encoding and 

how its symmetric data decomposition is defined. After this, we designed and 

implemented the necessary changes to the application to permit asymmetric load 

balancing. Concurrent with the development of the load balancing algorithm was the 

design and implementation of a library that the load balancing algorithm uses to assess the 

capabilities of the compute nodes. We then designed and conducted experiments to test 

the modifications and statistically assessed the results to determine if and how much the 

changes improve the performance of the application on a heterogeneous cluster. 

1.3. Document Overview 
The remainder of this document is organized thus: 

Chapter n provides the background necessary to understand this thesis effort. 

This begins with a discussion on commodity supercomputers and the factors that led to 

them. This discussion then leads into a more detailed description of the system used for 

this thesis effort. Next, the application that was modified for the experiments is described. 

Finally, a discussion on load balancing is offered, including an analogy to convey the 

concept of load balancing, previous load balancing efforts, and why load balancing is 

important in this case. Supplemental background material can be found in Appendix A. 



Chapter in details the approach used in this enterprise. The chapter begins by 

explaining how we selected the experimental application, and describes the process by 

which the application was modified to implement asymmetric load balancing. Next, the 

design and implementation of the library that provides the load balancing algorithm with 

the necessary information is outlined. Finally, we discuss how we tested the load 

balancing techniques. 

Chapter iv provides the results and analysis of those tests. The performance of 

the application in the major tests is examined, as is the improvement over the non-load 

balanced performance. The scalability of the application on the ABC, both before and 

after load balancing, is also addressed. Tables of the raw data are available in 

Appendix D. 

Chapter v offers conclusions about asymmetric load balancing and the different 

weighting approaches tested. A discussion on future directions is also provided for both 

asymmetric load balancing research and for the growth of the AFIT Bimodal Cluster. 

Appendix A provides additional background material on data partitioning 

approaches and the finite difference method of solving systems of partial differential 

equations (PDE), that is not vitally necessary to understand this document but may help 

the interested reader who is unfamiliar with concepts tangential to this thesis effort. 

Appendix B lists the "diff' files for the application used in the experiments. Full 

listings of the source code is impractical; however, the UNIX diff command [30:2-34 

to 2-35] permits a listing of only the changes between the original code and the modified 

code. The patch command [93] can then be used to reconstruct the new code from the 



original,3 or vice-versa. Here, the list of changes allows the readership to study the code 

implementing the load balancing schemes described in Sections 3.3 and A.l. 

Appendix C lists the source code that implements the design in Section 3.3.2.2 to 

measure the relative capabilities of the compute nodes. 

Appendix D is a repository for tables of the results of the experiments. Included 

are the performance values for each of the experiments, as well as the data partition sizes 

for each of the experiments. 

Throughout this document, the assumptions about readership are: 

a) Understanding of computer architecture. 

b) Understanding of algorithms. 

c) Familiarity with basic parallel & distributed programming concepts. 

Available from [99]. 



//.   Background 

This chapter provides the reader with the appropriate background to understand 

the necessity, approach, and results of this thesis effort. A description of commodity 

supercomputing is provided, along with explanations of why commodity supercomputing 

has become an important area of research. Next, material directly relevant to this thesis 

investigation is described: a description of the system used for the experiments, an outline 

of the NAS Parallel Benchmarks [99], which includes the application modified for the 

experiments, and an explanation of load balancing and why it can offer a dramatic 

performance improvement on a heterogeneous platform. The material presented does not 

include computer architecture [64][35], algorithms [16], basic parallel & distributed 

processing concepts [48] [4], fluid dynamics [42], or computational fluid dynamics [7]; the 

reader who is unfamiliar with a concept may find explanations in Appendix A or in the 

references. 

2.1.  Commodity Supercomputing 
Massively parallel processor (MPP) machines are those systems designed for very- 

high-end applications that demand the highest computational and interprocessor 

communcation capabilities. An MPP uses commodity processors on the nodes, 

interconnected by a high-bandwidth, low-latency network. MPPs can be scaled up to 

hundreds of nodes, and MPPs with thousands of nodes are not unheard-of [43:28]. 

While there is clearly a continuing demand for MPPs, they suffer from weaknesses 

that are not shared by new classes of supercomputers. For example, an MPP design takes 



up to two additional years of engineering effort than is required to develop desktop 

workstations from the same components [8:55]. At the current rate of performance 

increase, this yields performances about half those possible if "just-in-time" configuration 

were possible. This extra engineering effort (and extra development costs) is not only in 

the hardware design, but also due to a parasitic redesign of the OS and other software - 

the system software developed for a workstation using a certain processor is suboptimal 

for an MPP node, and drivers for the unique hardware configurations must be thoroughly 

tested [8:55-56][94]. 

Ten years ago, Gordon Bell predicted that the diseconomy of scale for 

supercomputers would lead to only the largest applications getting executed on systems 

with the most computational power. More and more challenging applications being 

investigated by budget-restricted researchers would be performed on distributed lower- 

end computers working in concert [12:1094-1095,1100]. Five years ago, technological 

advances resulted in the initiation of two projects that would bring supercomputing 

capabilities to researchers on budgets. They were the Berkeley NOW Project [8] and the 

NASA Gigaflops Workstation Project4 [84]. 

2.1.1. Networks of Workstations 

While parallel computing on clusters of workstations (COWs) using commercial- 

off-the-shelf (COTS) equipment has been around since 1991 [8:56], advances in processor 

and network technology led a team at the University of California at Berkeley to 

undertake a massive Network of Workstations (NOW) project in 1994 with the overall 

4 Often referred to as "The Beowulf Project." 
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objective of making a system comparable in performance to supercomputers at that time. 

The specific objectives of the investigation were: 

a) Use of the aggregate DRAM among the workstations as backing store for virtual 

memory (VM), in lieu of using a hard disk; 

b) Allowing workstations access to each others' file caches; 

c) Use of the aggregate disk space among the workstations as a redundant array of 

independent disks (RAID); 

d) Development of a low-overhead, low-latency communication library to replace the 

Parallel Virtual Machine (PVM) library; 

e) The impact that local sequential jobs and spawned parallel processes have on each 

other when workstations are available for both interactive use and supercomputing; 

and 

f) A robust global operating system for the NOW, built on top of the native OS, 

providing a "guarantee" of stand-alone workstation performance or better to every 

user 

[8:56-62]. 

In 1996, to study the utility of a COTS NOW in meeting the US Air Force's high 

performance computing needs, particularly in the field of digital signal and image 

processing, students at AFIT constructed a COW consisting of five Sun Ultra Sparc Is 

and an Ultra Sparc 2, networked by lOBaseT switched Ethernet or by Myrinet [31][102]. 
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2.1.2. Beowulf-Class Supercomputers 

At the same time the Berkeley NOW Team began its investigations, the Earth and 

Space Science division at NASA's Goddard Space Flight Center initiated the Gigaflops 

Workstation Project with the mandate of developing a "Gigaflops Scientific Workstation" 

costing no greater than $50,000, which was then the price of a high-end scientific 

workstation. The architects of the prototypical system, "Beowulf,"5 kept the price under 

$50,000 by using only commodity components6 and open-source, free-license software7 

that allowed optimization of the OS (Linux) for the architecture and application, though it 

achieved only 60 Mflops [84]. By 1996, though, the combined benefits of more powerful 

commodity processors, less expensive high-speed networks, and free software permitted 

Beowulf-class system constructed from sixteen Intel Pentium Pro machines networked by 

dual 100BaseT switched Fast Ethernets to sustain 1.25Gflops for $50,000 [72]. 

In the years since Beowulf was demonstrated, government research laboratories, 

academic institutions, and commercial vendors throughout the world have constructed 

Beowulf-class systems and PoPC's,8 taking advantage of the very low price afforded by 

the economies of scale available from commodity PCs & networks and from free-license 

software. While most commonly implemented with Intel x86 processors, many 

5 There is no particular significance to associating the name with the Beowulf legend, other than "it just 
sounded cool" [13]. 
6 Sixteen Intel 80486DX4-based personal computers interconnected with lOBaseT Ethernet and 10Base2 
channel-bonded Ethernet. 
7 The issue of free vs. proprietary software and open-source vs. closed-source are beyond the scope of this 
thesis (as is the debate over "free software" vs. "open-source software"), except to emphasize that free 
software permits customization of the OS and device drivers, reduces the expense of building a large 
system, and uses a development model that assures rapid identification and correction of bugs. The 
interested reader should see [68] [69] [90]. 
8 The exact definition of a Beowulf is a subject of some debate [13] [66]. "PoPC" is a more general system 
description than "Beowulf," and does not specify that a single-system image be maintained, nor does a 
free operating system need be used [50]. 
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Beowulves are constructed with DEC Alpha processors [13]. Less commonly 

implemented, though occasionally discussed are systems using IBM/Motorola PowerPC, 

Sun SPARC, Motorola 68k, and Acorn ARM processors [52]. 

Trying to determine precisely how many such systems exist is not easy since most 

are constructed by the researchers themselves, rather than purchased fully assembled from 

supercomputer vendors. There are indicators, however. The union of three websites 

[24] [52] [71] and [28] [47] [79] [73] [87] indicate there are at least 78 clusters at 60 sites 

using Linux, Solaris, and Windows NT.9 There are at least three commercial vendors of 

high performance clusters, Alta Technology [6], DCG Computers [21], and Paralogic 

[63]. Finally, the Beowulf Mailing List [13] has a total of 762 subscribers from 644 

internet domains [55]. Examining several sources [24][28] [52] [55] [79] [71] [73] [87] 

reveals there are at least nineteen countries with high performance clusters.10 Some of the 

more notable systems are listed in Table 2-1. 

Beowulf defines a genre of supercomputers known for their price-to-performance 

ratios. In 1997, the Gordon Bell Prize for Price/Performance was awarded to a 32- 

processor Pentium Pro-based Beowulf11 that sustained $47/Mflop on an n-body treecode 

[95]. More recently, a 70-processor DEC Alpha-based Beowulf, DoE's "Avalon," took 

second-place in the 1998 Gordon Bell Prize in the same category after sustaining 

9 Does not include "enterprise clusters" designed to provide fail-over and similar high-reliability services. 
10 Countries known to have PoPCs: Australia, Belgium, Brazil, Canada, Czech Republic, France, 
Germany, India, Iran, Israel, Italy, Japan, Spain, Sweden, Switzerland, Taiwan, Thailand, the United 
Kingdom, and the United States. 
11 DoE's 16-processor "Loki" and the California Institute of Technology's 16-processor "Hyglac" 
networked together. 
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$15/Mflop on molecular dynamics code, losing out to an application-specific computer 

[96][41]. 

Table 2-1. Noteworthy PC Clusters. 

Name 
Location 

URL 

Processors 
Network 

Significance 

PAPERS portable demonstrator 
Purdue University 
http://garage.ecn.purdue.edu/~papers 

4 80486 
PAPERS (experimental custom 

network) 

20-pound portable cluster 

Stone SouperComputer 
Oak Ridge National Laboratory 
http://www.esd.ornl.gov/facilities/ 

beowulf/ 

126 (mostly 80486; some 
Pentium) 

Ethernet 

All nodes are "surplus" 
desktop computers. "Zero 
dollars per node." 

Megalon 
Sandia National Laboratory 
http://megalon.ca.sandia.gov/ 

56 Pentium Pro 
Fast Ethernet 

14 nodes, each 4-way SMP 

theHive 
Goddard Space Flight Center 
http://newton.gsfc.nasa.gov/thehive/ 

128 Pentium Pro 
Fast Ethernet 

64 nodes, each 2-way SMP. 
First to exceed 100 
processors. 

Avalon 
Los Alamos National Laboratory 
http://cnls.lanl.gov/avalon/ 

140 Alpha 21164 
Fast Ethernet with Gb Ethernet 

cross-links 

First on Top500 list. Currently 
#113onTop5001ist. 

C-Plant 
Sandia National Laboratory 
http://www.cs.sandia.gov/cplant/ 

400 Alpha 21164 
Myrinet 

Currently #97 on Top500 list. 

NT SuperCluster 
Univeristy of Illinois at Champaign- 

Urbana 
http://www-esag.cs.uiuc.edu/ 

projects/clusters .html 

256 Pentium II 
Myrinet 

128 nodes, each 2-way SMP. 
Large-Scale Windows NT 
cluster. 

CLOWN 
University of Paderborn 
http://www.linux-magazin.de/ 

cluster/index.en.html 
http://www.heise.de/ix/aitikel/E7 

1999/01/010/ 

512 x86 (Pentium, 
Pentium Pro, Pentium II) 
and 60 Alpha 21x64. 

Fast Ethernet with Gb Ethernet 
cross-links 

Assembled in 12 hours. 
Executed "real-world" code 
and benchmarks, and 
disassembled same weekend 
(5-6 Dec 98). 

While Beowulf designs give researchers "fantastic" price/performance ratios, they 

also can bring high performance as well. In June 1988, the supercomputing community 

observed that Beowulves can compete with traditional supercomputers in terms of raw 

14 



performance: the judges of the Top50012 list ranked Avalon as the 315th most powerful 

supercomputer in the world due to its 19.2 Gflops performance on the parallel UNPACK 

benchmark [25]. Since then, DoE doubled the number of Avalon's processors and added 

more memory to the existing nodes, bringing its LINPACK performance to 48.6 Gflops and 

outperforming all but 112 of the world's supercomputers. Meanwhile, another DoE 

cluster of commodity Alpha PCs interconnected with the proprietary Myrinet [59] 

network achieved 54.2 Gflops and was ranked number 97 on the November 1998 Top500 

list [26]. 

To investigate the usefulness of PoPC's for DoD applications, students in AFIT's 

parallel & distributed computing laboratory began work in 1998 on the AFIT Bimodal 

Cluster. 

2.2.  The AFIT Bimodal Cluster - System Description 
The ABC is a continuously-evolving PoPC built with the just-in-time approach to 

hardware configuration. It differs from a Beowulf-class supercomputer in that 

a) it hosts a proprietary, closed-source operating system (Windows NT) in addition to a 

free-license, open-source operating system (Linux), and 

b) a single-system image is not maintained. 

The ABC can be booted under either of two operating systems. All compute 

nodes but one, have Microsoft Windows NT13 4.0 (SP4) [56] and Linux 2.0.33 [70] (with 

Beowulf [54] enhancements) installed and configured for cluster computing; the remaining 

12 A list compiled twice each year of the 500 most powerful supercomputers, as ranked by the LINPACK 

benchmark [89]. 
13 Three with Windows NT Server, and all others with Windows NT Workstation 
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node has only Linux installed. This last node is a nineteen-month-old14 personal computer 

already at AFIT that was donated to the project; since we have not yet purchased a 

Windows NT license for it, it has only Linux installed. 

Because just-in-time configuration is used, the capabilities of each node are, in 

general, different from the other nodes. In its current configuration (Figure 1-1), the ABC 

is built from twelve uniprocessor nodes interconnected by a 100 Mbps Fast Ethernet 

switch. One of these nodes uses a 200 MHz Intel Pentium15 processor; four use 333 MHz 

Intel Pentium II16 processors; six use 400 MHz Pentium II processors; and one uses a 

450 MHz Pentium II processor. 

The ABC's interconnection network is 100 Mbps Full-Duplex Fast Ethernet, using 

an Intel Express 510T switch. The 510T's switching fabric has an internal capacity of 

6.3 Gbps, providing an effective aggregate network capacity of 800 Mbps [45:78]. 

The memory configuration of the ABC is as diverse as the processor configuration. 

One node has 32 MB 15 ns DRAM, three have 128 MB 15 ns SDRAM, one has 256 MB 

15 ns SDRAM, and seven have 128 MB 10 ns SDRAM. This gives it an aggregate 

1.53 GB of distributed memory. 

Several tools are available; for this research, the Free Software Foundation (FSF) 

GNU egcs 1.0.2 compiler suite [19], particularly the egcs implementations of gcc and 

14 According to AFIT/SC's records, the computer was purchased in August 1997; it was added to the ABC 
seventeen months later in January 1999. At the time of publication, two additional months have passed. 
15 For a description of the Pentium design, see [14:679-696]. 
16 For a detailed description of the Pentium II design, see [58]. 
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g77,   are used with the MPICH 1.1.0 [9] implementation of MPI. Details on which 

processors were used can be found in Section 3.5. 

Table 2-2. Characteristics of ABC Nodes. 

Node Date Installed Processor Memory Operating System 
ABC01 April 1998 333 MHz 

Pentium II 
128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Server 
Linux 2.0.33 

ABC02 April 1998 333 MHz 
Pentium II 

128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Server 
Linux 2.0.33 

ABC03 April 1998 333 MHz 
Pentium II 

128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Workstation 
Linux 2.0.33 

ABC04 April 1998 333 MHz 
Pentium II 

256 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Server 
Linux 2.0.33 

ABC05 August 1998 400 MHz 
Pentium II 

128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Workstation 
Linux 2.0.33 

ABC06 August 1998 400 MHz 
Pentium II 

128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Workstation 
Linux 2.0.33 

ABC07 August 1998 400 MHz 
Pentium II 

128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Workstation 
Linux 2.0.33 

ABC08 August 1998 400 MHz 
Pentium II 

128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Workstation 
Linux 2.0.33 

ABC09 August 1998 400 MHz 
Pentium II 

128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Workstation 
Linux 2.0.33 

ABC10 August 1998 400 MHz 
Pentium II 

128 MB SDRAM 
128 MB swapspace 

Windows NT 4.0 Workstation 
Linux 2.0.33 

ABC11 December 1998 450 MHz 
Pentium II 

128 MB SDRAM 
256 MB swapspace 

Windows NT 4.0 Workstation 
Linux 2.0.33 

ABC12 January 1999 200 MHz 
Pentium 

32 MB DRAM 
64 MB swapspace 

Linux 2.0.33 

2.3. NAS Parallel Benchmarks 
The original NAS Parallel Benchmarks (NPB) were developed at NASA Ames 

Research Center in 1991 as problem specifications, which researchers and supercomputer 

vendors could then implement. The five kernels (Table 2-3) and three simulated CFD 

applications (Table 2-4) in NPB were intended to allow demonstrations of systems' 

suitability for aerophysics applications. Each of the kernels focused on a particular type of 

17 -03 optimization for C and -O optimization for Fortran. 
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numerical computation, while the simulated applications were specified such that they 

represent data structures, data movement, and computational techniques that are typically 

found in real CFD applications [75:2]. 

Table 2-3. NAS Parallel Benchmarks - Kernels. 

Benchmark Name Abb. Description 
Embarassingly Parallel EP Accumulate 2D statistics of large number of pseudorandom numbers 

Multigrid MG Solved 3D Poisson PDE, with constant coefficients 
Congjugate Gradient CG Computes approximation to smallest eigenvalue of large, sparse matrix 

FFTPDE FT Solves 3D PDE using FFTs 
Integer Sort IS Sorts array of integers 

[75:15-16] 

Table 2-4. NAS Parallel Benchmarks - Simulated CFD Applications. 

Benchmark Name Abb. Description 
Lower-Upper Diagonal LU Uses symmetric successive over-relaxation (SSOR) to solve regular- 

sparse, block 5x5 lower & upper triangular system of equations that are 
the product of unfactored implicit finite-difference discretization of 
three-dimensional Navier-Stokes equations 

Scalar Pentadiagonal SP Solves multiple independent systems of nondiagonally-dominant, 
scalar pentadiagonal equations resulting from approximately-factored 
implicit finite-difference discretization of Navier-Stokes equations 

Block Tridiagonal BT Solves multiple independent systems of nondiagonally-dominant, block 
5x5 tridiagonal equations resulting from approximately-factored 
implicit finite-difference discretization of Navier-Stokes equations 

[75:16][10:5] 

By 1995, some shortcomings of NPB 1 benchmarks led to the development of the 

NPB 2 benchmarks. These shortcomings included [10:3]: 

a) The implementations tended to be tuned to the particular system by vendors. While 

these implementations demonstrated what the specific system is capable of doing, they 

were not representative of the performance which a typical computational 

scientist/engineer could expect for a specific application. 

b) The vendor-implemented software generally was also proprietary, preventing 

researchers from using the vendors' techniques to obtain better performance. 
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c) The system-specific implementations were not very portable due to compiler/assembly 

language tuning. 

d) The largest problem size specified in NPB 1 was no longer representative of the 

largest real-world problems. 

Table 2-5. NPB Problem Sizes. 

Benchmark 
Class S 
"sample" 

Class W 
"workstation" 

Class A Class B Class C 

EP 224 225 228 230 232 

MG 323 643 2563 2563 5123 

CG 1,400 7,000 14,000 75,000 150,000 
FT 643 1282x32 2562xl28 512x2562 5123 

IS 216 220 223 225 227 

LU 123 333 643 1023 1623 

SP 123 363 643 1023 1623 

BT 123 243 643 1023 1623 

[10:12][61] 

To overcome the first three of these problems, NPB 2 provided Fortran 77 source 

code using MPI for interprocess communication. Instead of pencil-and-paper 

specifications, this code was written to be very portable and to be representative of what a 

typical computational scientist might produce. The last shortfall was corrected by 

specifying another, larger problem class to supplement the originals [10:5-6,12]. Further, 

in 1997, a "workstation" problem class was specified for systems with less than 32 MB of 

memory [99]. 

Because the NBP 1 results still hold significance as what a system could achieve, 

NAS continues to accept NPB 1 results. For NPB 2 results, NAS defined three tiers 

[10:10]: 

a)  Unmodified - the only changes to the source code are those necessary to make the 

code execute. 
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b) Minor modifications - up to 5% of the lines of code are modified; modified source 

code must be provided. 

c) Greater than 5% modifications - treated as NPB 1 results, except that non-vendor 

submissions are included with the NPB 2 results, and that modified source code must 

be provided. 

The version of the NAS Parallel Benchmarks used in this thesis effort is NPB 2.3, 

downloaded from [99]. 

2.3.1. LU Simulated CFD Application 

One of the simulated CFD applications in NPB 2 is LU, named after the format of 

the system of PDEs, and not because it uses LU decomposition (it doesn't [75:5]). 

Instead, the LU benchmark uses a well-known point-Gauss-Seidell relaxation scheme, 

SSOR,18 to solve the three-dimensional compressible Navier-Stokes equations (Table 2-6) 

[78:13][101:1] using double-precision floating point arithmetic [61].19 LU was selected 

over other applications as our testbed, as described in Section 3.2, because of three major 

factors: 

a)  it is designed specifically to have communication and computation patterns similar to 

"real" CFD applications [75:2]; 

18 The SSOR algorithm is described in [11]. Given a system of PDEs expressed as Ax = b , where A is 

the coefficient matrix, b is the vector of constants, and x is the solution vector, SSOR solves a system of 
PDEs by partitioning the coefficient matrix into upper & lower triangular matrices, then iterating through 
the formation of the constant vector, solving the upper triangle, solving the lower triangle, and updating 
the solution by calculating the steady-state residual [11:2]. The interprocess communication for current 
version of the parallel implementation is described in [101]. 
19 Double-precision is the highest level of precision explicitly defined by the IEEE 754-1985 Standard for 
Binary Floating-Point Arithmetic, providing 15-17 base-10 digits of precision. The near-universal 
adoption of IEEE 754 assures that LU will provide identical results regardless of the platform on which it 
is executed [27:68-70]. 
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b) it provides self-verification to establish that the solution is correct [10:7]; and 

c) it is a well-known and easily-accessible piece of software, which makes it easier for 

others to reproduce our results or to compare their own results with ours. 

Table 2-6. Navier-Stokes Equations. 

|f¥v(^J = :0 (2-1) 
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dp             3 
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7<^ 3xk)_ 

3 
+  

3Ui (2-2) 

DT                        , 
pcv— /»V-^ + KVT- V■<?,, + <P+q'" (2-3) 

[42:63] 

In the unmodified LU code from NPB 2.3, the problem is partitioned among 

processors by alternately halving each processor's subdomain along the x and y axes (the 

z axis is not partitioned), resulting in a block checkerboard partitioning;   this requires a 

power-of-two number of processors [78:13-14]. Because Fortran 77 cannot allocate 

memory dynamically, this partitioning must be prepared at compile-time by specifying the 

problem class and the number of processors, allowing the correct amount of memory to be 

allocated [10:19]. Normally, this is completely appropriate - when using an MPP, or even 

a cluster with homogeneous nodes, static allocation of memory for equal-sized partitions 

provides the correct amount of memory needed by each process. 

20 See Section A. 1. 
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Figure 2-1. Relaxation of a tile. Active element is black; relaxed elements are gray; 
unrelaxed elements are clear. 

The system of equations is solved by first defining each plane along the z axis on a 

particular subproblem as a tile. A tile is relaxed by starting in the corner grid point closest 

to the Cartesian origin; for the sake of discussion, the coordinates of this grid point are 

(kjo,k) (Figure 2-la). Next, the (io+ljo,k) point is relaxed. Then, (i0+2jo,k) is relaxed 

(Figure 2-lb). And so on, until the end of the column, (imaxJo,k), is reached. This is 

repeated for the j0+1 column (Figure 2-lc), the j0+2 column, and each succeeding column 

until the last column of the tile,ymax is relaxed (Figure 2-ld) [101:5]. As a typical Gauss- 

Seidel relaxation process, the relaxation here uses first-order accuracy,21 in which the 

value for (ij,k) is found by making use of the six nearest neighbors, (i±lj,k), (ij±l,k), and 

(ij,k±l). Relaxation of (ij,k) is only permitted after (i-lj,k), (ij-l,k), and (ij,k-l) have 

been relaxed, while the values from the previous relaxation of (i+lj,k), (ij+l,k), and 

(ij,fc+l) are used [101:2]. 

Relaxation of the tiles begins with the tile closest to the origin, which we shall call 

(IoJo,ko) (Figure 2-2b). When tile (I,J,k) has been fully relaxed, the values22 of its border 

21 See Section A.2 for discussion on solving continuous partial differential equations using discrete 
techniques. 
22 Density, energy, and momentum in the x, y, & z directions. 
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23 cells are communicated to the processors with tiles (I±l,J,k) and (I,J±l,k).    That 

complete, tiles (I+l,J,k), (I,J+l,k), and (/,/,fc+l) are relaxed (Figure 2-2c). This process 

continues until all tiles have been relaxed (Figure 2-2/) [101:5]. This is one iteration; LU 

is known to converge to a solution in 250 iterations [75:5]. 

(b) (c) 

a 

(d) 

;-■.'■ -~ ~ 

(g) 

CD 
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Figure 2-2. "Wavefront" of tile relaxation. Active tiles are black; relaxed tiles are 
gray; unrelaxed tiles are clear. 

2.4. Load Balancing 
Load imbalance is one of the major sources of overhead in a parallel system. 

Generally, this is because the nature of the application makes it extremely difficult, if not 

impossible, to predict the size of the subtasks a priori. Compounding this problem, the 

processors often must synchronize during execution; if all processors are not ready to 

synchronize at the same time, then those which are ready earlier must sit idle [48:135]. 

23 Tiles (I,J,k±i) are on the same processor as (I,J,k). 
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Load balancing is the problem of minimizing the total idle processor time, and in 

so doing, minimizing the execution time of the complete parallel application. For a data- 

decomposed regular problem, such as CFD, load balancing typically is the near-trivial 

process of statically dividing the problem domain into equally-sized subdomains. This can 

even be done at compile-time, as the unmodified LU does [10:19]. For a task- 

decomposed problem or an irregular problem, dynamic load balancing must be used and is 

one of the most important modules in the application [22], as described in Section 2.4.2. 

2.4.1. Load Balancing - Concept 
Before going into further detail about load balancing, let us consider the concept 

and why it's important. Consider the contrived math problem: 

Alone, Airman Jones can load a certain quantity of cargo onto an aircraft in twenty minutes. 

Airman Smith can load the same cargo in twelve minutes. Airman Banks can load the cargo 

in thirty minutes. How long would it take them to load the cargo together? 

This is essentially a parallel application - each of the airmen (processors) can work mostly 

independently of the others, with some time spent coordinating their actions. Ignoring the 

granularity of the problem of loading cargo, this is a straight-forward problem that a 

middle-schooler should be able to solve. If the airmen (processors) had the capability to 

shift work between them as needed, the cargo can be loaded in six minutes. 

But if they cannot adjust their work on the fly, or if it is too expensive (in terms of 

overhead), then they have to attempt to balance their workload statically. If their 

supervisor assumed they each are equally skilled cargo loaders, then they would each be 

assigned a third of the cargo. And if they are equally skilled loaders, this would be a good 

24 
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decision, particularly because it is very inexpensive decision, computationally-speaking. 

However, since they aren't equally skilled loaders, the job would be finished in ten 

minutes, the amount of time it would take Banks to load a third of the cargo. Meanwhile, 

Jones has been relaxing for three minutes, twenty seconds, and Smith's been sitting around 

idle for six minutes. If their supervisor knew a priori the performance of each airman, 

then he could assign each an appropriate portion of the cargo and shave four minutes off 

the job. 

2.4.2. Dynamic Load Balancing 
In the above analogy, when the airmen are shifting their workloads without having 

to be told by their supervisor what each was responsible for, they are using dynamic load 

balancing. With dynamic load balancing, work is migrated from one processor to another 

to prevent processors from sitting idle while others are overworked. This can be achieved 

either by receiver-initiated techniques, in which idle processors request more work 

(Airman Smith finishes his portion of the cargo and offers to help Jones and Banks), or by 

sender-initiated techniques, in which processors with a load above some threshold seek 

processors with lesser loads to accept some of its load (Airman Banks asks Smith and 

Jones for help) [48:311,340]. 

The schemes to determine the donors and recipients, as well as the quantity of 

work to be migrated, are full areas of research in their own right and are beyond the scope 

of this thesis. The interested reader will find some are discussed in 

[48:313-315,317-321,340-341][28]. 
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When the interconnection network (ICN) is a commodity network, dynamic load 

balancing becomes even more challenging due to the increased communication overhead 

involved. Kumar, et.al, [48:320-321] mathematically treat this problem for a depth-first- 

search application, while Dubrovsky, et.al, [28] at the Israel Institute of Technology treat 

it experimentally for four different applications.25 Kumar, et.al, treat only "simple" 

techniques like round-robin and random-polling, and do not contrast them with more 

"complex" techniques. On the other hand, Dubrovsky, et.al, contrast round-robin with 

other strategies that try to find optimal task allocations and finds that the communication 

overhead of the "intelligent" strategies produce a greater overall runtime than the 

suboptimal allocations provided by round-robin; they found that the communication 

overhead of the "intelligent" techniques was too great for a commodity network, and so 

the "simple" strategies yielded better performance. 

2.4.3. Asymmetric Static Load Balancing 
In the cargo-loading analogy, when the supervisor assigned each airman 

(processor) a specific portion of the task, the supervisor is using static load balancing. 

While suitable for regular applications when each worker has equal capabilities, it should 

be clear from the analogy that if the assumption of equal capabilities is a erroneous, then 

the job requires more time to complete than is required. When the supervisor assigns each 

airman (processor) a portion of the task according to his abilities, he was using 

asymmetric load balancing. 

25 Matrix multiplication, all-pairs shortest path using Dijkstra's algorithm, solving a set of partial 
differential equations, and the Traveling Salesman Problem. 
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While static and dynamic load balancing for homogenous parallel computing 

platforms has been well studied for more than a decade, load balancing for heterogeneous 

parallel systems is a relatively new subject of investigation with less treatment [22]. On a 

heterogeneous platform, the goal is the same: to minimize idle processor time and, by 

extension, to lower the wall-clock time. This is done by distributing the work such that no 

processor is waiting for the completion of another [82]. The critical problem is that the 

load balancing techniques developed for homogenous systems are based on fixed 

parameters, tuned for the particular system. In a heterogeneous system, these parameters 

are not always known a priori [22]. 

Addressing this problem, researchers at the University of Paderborn [22] describe 

a dynamic load balancing technique that uses observed computational & communication 

performance to predict the time a task would complete on a given node and the time 

needed to query a node. Based on this technique, the authors developed new initiation, 

information exchange, and load exchange strategies that are suitable for a heterogeneous 

system [22]. 

Whereas the dynamic load balancing technique in [22] adjusts the load on nodes 

based on runtime performance, researchers at Brigham Young University [82] describe a 

static load balancing method that does not assign tasks until the abilities of the target 

nodes are known. This challenge is compounded by a variable system configuration - 

compute nodes are workstations "donated" to the system by logging onto a web page. 

The solution selected is to execute the HINT benchmark [39] once on each node to 
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measure their capabilities and then to allocate the appropriate subtask. Each nodes' 

HINT results are stored for future use [82]. 

Finally, researchers at the Universidade de Coimbra in Portugal [81] ignored the 

problem. Like [82], compute nodes are donated workstations achieved by logging onto a 

web page. Unlike [82], the internet itself was the ICN, and donated workstations could be 

anywhere in the world. They recognized that dynamic load balancing was clearly out of 

the question due to the communication limitations. They also recognized that with such a 

dynamic system configuration, it is impractical to insist on knowing the capabilities of the 

donated workstations. Instead, their master process decomposes the problem into small 

and independent tasks (not necessarily the same size), which are farmed out to the worker 

processes on the workstations. When a worker process finishes its computation, it sends 

the results back to the master process and waits for its next simple task. Load balancing is 

achieved by reducing the problem to the finest granularity possible and never expecting a 

worker process to execute more than one simple task at a time [81]. The authors of [81] 

do not address the performance impact of this fine-grained task decomposition, as the 

ability to call upon the computing power of thousands of workstations should be viewed 

as an "enabling technology" rather than as a way to obtain performance speedup. 

This survey, of course, is not the complete sum of all research in asymmetric load 

balancing, but it is representative, and it should convey to the readership the present level 

of research in this young field. 
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2.4.4. Load Balancing LU 
Now consider Figure 2-3 and Figure 2-4, generated using the upshot profiling 

tool that is part of the MPICH distribution [9]. Instrumentation was added to the 

ssor. f file in the LU application to indicate when each process was computing an 

upper-triangle solution, a lower-triangle solution, or a steady-state residual. What we are 

observing are the rates at which two processors are executing portions of the SSOR code. 

Figure 2-3 shows the time specific processors are spending in each portion of the 

SSOR engine of the LU application before asymmetric load balancing is implemented. 

Process 0 (PO) and Process 1 (PI) are identical processes, except for the data for which 

each is responsible. PO is executing on a 450 MHz Pentium n, and PI is executing on a 

200 MHz Pentium; however, since traditional (symmetric) static load balancing is used, 

each has been assigned exactly half of the data set to solve. 
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Figure 2-3. Unbalanced LU.A for 450 MHz Pentium II & 200 MHz Pentium. 

Process 0 completes the Residual calculation faster than Process 1 does, and then 

it enters the portion of the code that deals with the lower triangle of the system of PDEs. 

P0 is immediately blocked for communication with PI and must wait for PI to reach the 

appropriate portion of the code. After the processors exchange information, they perform 

the lower triangle calculation; again, P0 completes the calculation faster than PI and must 
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wait for another information exchange before proceeding into the upper triangle region. 

This is why the faster node spends more time in the lower triangle segment than the slower 

one does - PO finishes all calculations earlier but must periodically wait for PI to catch up. 

The situation is similar for the upper triangle region. 
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Figure 2-4. Load balanced LU.A for 450 MHz Pentium II & 200 MHz Pentium. 

In Figure 2-4, a load balancing algorithm26 is used to apportion the subdomains 

according to the processors' abilities. Whereas each process had previously been 

responsible for half of the domain, now PO is assigned just over three-fourths of the 

problem, and PI just less than a fourth. Clearly, the processes are now spending about the 

same amount of time in each section of the application and little time waiting for 

communication. As a result, when load balancing is used for this case, the application 

requires 48% less time to execute than the unbalanced version. 

Compete results are presented in Chapter iv. 

2.5. Summary 

In this chapter, we reviewed the economic and technical aspects of the computer 

industry that led to the use of COTS hardware and software for high performance 

26 The load balancing algorithm developed in Section 3.3 using the Mflops weighting, described in 
Section 3.3.2.2. 
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computing. The current configuration of the ABC was described; details on its 

construction are in Section 3.1. Next, the application used to test the load balancing 

techniques developed in this thesis effort was discussed, followed by an explanation of 

load balancing and a review of previous efforts in asymmetric load balancing. 

Now that we've seen a specific example of how load balancing can improve the 

LU application on a heterogeneous platform, we discuss how to implement and test load 

balancing in Chapter in. 
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///.  Methodology 

Building upon the background provided in Chapter n and Appendix A, we now 

consider the high- & low-level design and implementation decisions made in the course of 

this endeavor. After explaining why the LU application was selected as the testbed, we 

discuss the changes to the LU application, then the software created to measure the 

nodes' performance, and finally the design of the experiments. 

3.1.  Construction of the AFIT Bimodal Cluster 
The AFIT Bimodal Cluster was started in the spring of 1998. There was no formal 

methodology to its construction, but rather a series of decisions that were addressed as 

they arose. One of the first considerations was whether the operating system should be 

Windows NT or Linux. Linux has the advantage that its license is free, and that the 

Beowulf project and related projects [52] had already broken the ground for parallel and 

distributed computing with Linux. Windows NT has the advantage that the nodes can be 

ordered with NT pre-installed, and that two members of our team are Microsoft Certified 

System Engineers (MCSE). We realized, though, that this need not be an either-or 

consideration, and both operating systems were included. The author undertook the 

responsibility of administering the Linux system, learning the job of system administration 

along the way. 

Another early decision was that the most current hardware would be added to the 

ABC as money became available, and that personal computers already at AFIT that were 

offered to be part of the ABC would be considered on a case-by-case basis. The 
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alternative was to use only homogeneous nodes, but this was ruled out for three reasons, 

two of which deal with future expansion. First, eventually, the processors used in the 

system would not be available for further expansion. Second, the ABC's performance 

would not be able to grow with technology. The third reason is that older computers 

donated to the project are additions to the ABC's capabilities without impacting our 

budget. 

The initial Linux installation was not an advanced attempt at installation, because 

the author was still learning system administration. Four 333 MHz Pentium IIs were used, 

interconnected with an eight-port Fast Ethernet hub. Each had a full Linux installation, 

and each was essentially an independent computer; even NFS was not implemented, which 

meant users had separate home directories on each machine. Early testing with some 

simple kernels27 revealed that the hub produced an unacceptable number of network 

collisions for communications-intensive applications, and a 24-port Fast Ethernet switch 

was ordered. 

Another aspect of the system revealed during the early testing is an error in the 

tcp_ack () function in the Linux kernel which delays the transmission of partial packets, 

decreasing the network throughput (Figure 3-1). Whether this impacts performance, and 

by how much, depends on the application's communication patterns, particularly the size 

of the messages and how often they are transmitted. We have since learned of a fix [76], 

but chose not to implement the fix for temporal reasons. 

27 Matrix-vector multiplication, matrix-matrix multiplication, ID FFT, and various sorting algorithms. 
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Figure 3-1. Delayed transmission of partial TCP packets under Linux. 

When six 400 MHz Pentium IIs were added to the system, we took the 

opportunity to perform a full reinstallation of Linux, making use of lessons learned over 

the previous months. NFS was implemented to provide transparency to the users. We 

also sought to take advantage of the aggregate disk space within the cluster, should users 

need that much disk space, and NFS is used for this as well. We also attempted to 

implement MS to share the password files across the cluster but were unable to get it to 

work correctly, and we decided to spend our time on issues more directly related to our 

research. 

We had to address the issue of terminals for the system. When there were only 

four nodes in the cluster, each node had its own monitor, keyboard, and mouse. With ten 

nodes, physical space prevented this. Many other PoPC sites do not provide direct access 
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to each node [66], but students using the Windows NT installation did require occasional 

access to each node. We solved this problem by ordering keyboard-video-mouse switches 

to allow the nodes to share terminals. 

Security of the system is a serious issue. We address it by not letting it be an issue 

for Linux. The author, recognizing his limitations as a system administrator, has not 

configured the Linux installation to accept any remote access from outside the cluster. 

The cluster can be accessed remotely through the NT installation, but not through the 

Linux installation. 

Tool selection is treated on an as-needed basis. For the early testing of the ABC, 

the gcc compiler was sufficient. However, the team determined that we also need a C++ 

compiler and a Fortran compiler. So, we downloaded the egcs suite [19], which includes 

C, C++, and Fortran 77 compilers, and we also ordered a commercial Fortran 90 license.28 

MPICH [9] was selected as the communications library because it was the one with which 

we already had experience. 

Since these decisions were made, the cluster has grown further to include the 

24-port switch, a 450 MHz Pentium II and a 200 MHz Pentium.29 

3.2. Application Selection 
We choose the computational fluid dynamics problem domain for this research 

because it is a well-understood deterministic problem, and because it would directly 

support other research at AFIT. With the problem domain selected, a specific application 

must be chosen on which to test the load balancing techniques. The three options 

28 The Fortran 90 license arrived too late to be used for this thesis. 
29 See Figure 1-1 and Table 2-2. 
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considered are: to write a simple CFD application, to use the NAS Parallel Benchmarks, 

and to use a "real-world" application. 

Using a real-world CFD application would provide extra validity to our claim that 

asymmetric load balancing is suitable for real-world applications. We obtained such an 

application from the AFRL, but there are two reasons we do not use it. The first is that 

since it is not publicly available, other researchers would not be able to use the same 

application to reproduce our results. The second, more significant, reason is that the 

application is written using Fortran 90, and our Fortran 90 license is unavailable. 

Writing a simple CFD application would not be hampered by either of the 

problems with using the AFRL code, but this option isn't the best option, either. First, it 

would require time to be spent developing and testing the CFD code instead of developing 

and testing the load balancing code. Second, the correctness of the algorithm would have 

to be assumed since the author, not being an expert on fluid dynamics, cannot verify the 

solutions obtained. 

The NAS Parallel Benchmarks, though address all the above concerns. It is a 

publicly-available benchmark suite, most of which is written in Fortran 77. It also includes 

self-verification, which assures us that not only is the algorithm correct, but also that any 

modifications we make do not impact the correctness of the solution. It also reports both 

the time and the Mflops rate, which facilitates comparing the load balanced performance 

to the original code's performance [10:7]. 

Selection of the particular simulated CFD application from NPB is based on our 

desire to obtain as many points of comparison as possible. The SP and BT applications 

require a square number of processors [10:9]; given the processors available, this limits us 
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to three quantities: one, four, and nine processors. LU, on the other hand, requires a 

power-of-two number of processors [10:8], permitting comparisons with four quantities: 

one, two, four, and eight processors. Further, at the time this decision was made, we still 

were using the 8-port hub, which would have prevented testing the nine-processor case 

for SP or BT. These factors made LU the preferable application. 

3.3. LU Modifications 

The full code of the LU application is not reproduced in this thesis due to its size 

and because it is available for download from [99]. Appendix B, though, contains the 

output dif f produces when contrasting the original and the modified code so other 

researchers can make use of these techniques and to facilitate the reproducibility of our 

results. 

The modification paths are shown in Figure 3-2. Modification 031 was a minor 

modification to get the code to execute on the ABC, due to problems with MPICH 1.1.0 

and Fortran, and does not represent a redesign of LU. The remaining changes are 

described in the following sections. 

30 

30 There are 6265 lines of code in the original source files used by LU [61]. 
31 See Section B.l. 
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Figure 3-2. Modification progression of LU, from original to asymmetrically load 
balanced implementation. 

3.3.1. Design of Domain Decomposition 

3.3.1.1.  Original Design 
We begin by examining the relevant portions of the original LU code. We wish to 

study the domain decomposition independent of the implementation language, to avoid 

confusion caused by programming language constructs, such as goto's. Z [44] lends 

itself well to this analysis by allowing us to clearly express the mathematical nature of the 

algorithm in set-and-logic notation. Programming-language-neutral models can also be 

created using Universal Modeling Language (UML) [74] and UNITY [15]. We choose 

not to use UML because the its object-oriented nature is not well-suited to the application 

we are describing. We opt for Z instead of UNITY for two reasons.   UNITY does not 

specify on which processor an assignment takes place [15:9], yet to express the data 

partitioning, we must be able to express at least the proportion of data to be allocated to 

each processor. Also, Z has become one of the more popular specification languages 

[32:448], which increases the likelihood it will be familiar to the readership. 
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We first convert LU's original partitioning scheme32 into Z syntax (Figure 3-3). 

The Z design begins with some simple constraints, namely that each process has a unique 

identification, the number of processes must be a power-of-two, each process can have at 

most one neighboring process in each of the cardinal directions, and each process can be a 

neighbor to no more than one process in each cardinal direction. 

  Process   
id: JV 

north,south, west,east: p Process 

nx,ny,nz: Z+ 

ipt,jpt,lcpt:ffl 

row,col:%+ (a) 

isizl,isiz1,isiz3 '• JV 

#north < 1 

#south < 1 

#west < 1 

#east < 1 

Subdomain 
LU : p Process 

nx0,ny0,nz0 : Z* 
xdim, ydim : JV 

/?.W ^ g.W) \fp,q e LU,pjt q»( 

VpeLU»(p.id<#LU) 

\/p,q,r G LU,p & q*\(#r > 0) A (r = p.north) => (r ^ q.north)/ 

Vp,q,r G LU,p * q»\{#r > 0) A (r = p.south) => [r ^ q.south)) 

Vp,q,r e LU ,p ^ q • \{#r > 0) A{r = p. west) => (r * q.west)) 

Vp,q,re LU,p* q»{i,#r> 0) A (r = p.east) => (r * q.east)/ 

Vp e Li7 »(/?.row = mod(p.id,xdim) + 1] 

V/7 e Lf/ »(p.col = p.id/ 
/x.dim "> 

V/7 e L£/ »^(4 < p.nx < p.ijiz,) A(4 < p.ny < p.isiz2) A(4 < p.nz < /J.W(Z3)) 

(b) 

Figure 3-3. Z design for original LU partitioning/load balancing. 

32 Mostly found in the file subdomain. f [61]. 
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Unbalanced Subdomain 
Subdomain 

3new(#LU =2") 
I  lQg;(#Z.U)  | 

xdim=2i    2 

#LU 
ydim ■■ 

xdim 

[p.row < mod[nx0,xdimj) ■ 

Vp e LU •[ ( nx ,    . . 
p.nx=      °  +1 \/\[p.ipt - [p.row-lj- p.nxjj 

Al* I f'l' 

[p.col < mod^o, ydim)) => \ 

{p.jpt = {p.col-\)p.ny)j 

[p.row > mod[nx0,xdimjj => 

VpeLV{( nyQ      \ 
p.ny = ——+\ 

y ydim     J 

p.nx = —r~ \Ayp.ipt = (p.row-1)- p.nx + mod[nx0,xdim)j i 

(p.col > mod(ny0,ydim)j ■■ 

A\p.jpt = (p.col-l)- p.ny + mod[ny0,ydimjjj ny0 p.ny r- 
ydimy 

V/J E LU »\p.nz = nz0) 

Figure 3-3 continued. 

Beyond these constraints, the Z design is a series of predicates that define the 

block checkerboard row and column each process is responsible for, as well as the 

particular coordinates for the process' tiles 

Every predicate in which there is only one instance of a process can be satisfied on 

each processor independent of the other processors. Nine of the twenty-one constraints 

are such predicates, offering parallelism in this symmetric load balancing scheme. 

3.3.1.2. Design Changes 
Having examined the baseline design, we consider the design considerations to 

implement asymmetric load balancing. The first consideration is the partitioning scheme. 

Section A. 1.3.3 describes the alternatives. 

40 



Bearing in mind that this is an initial effort at asymmetrically load balancing LU, 

drastic changes such as irregularly-shaped tiles can be immediately ruled out. The next 

two options described, in which the row widths are varied within each column rather than 

globally, can also be ruled out; again, they require modifications to underlying assumptions 

in the CFD engine that, while suitable for future experimentation, are inappropriate for this 

early exploration into asymmetric load balancing. 

This leaves two options left: block striping with variable column widths, and block 

checkerboard partitioning with the column and row widths balanced globally. Block 

striping is the simpler approach to implement, but that is not a sufficient reason to rule out 

the block checkerboard approach. The small number of processors available for this 

endeavor means that block checkerboard partitioning's advantage of using of all 

processors available is not a concern here.33 

There are, however, two performance-related reasons to use block striping and not 

block checkerboard. First, based on the analysis in Section A. 1.3.2, we expect that for 

smaller numbers of processors, the communication overhead involved in block 

checkerboard partitions is greater than that for block striped partitioning. Second, looking 

forward to implementation issues, the memory allocation requirements34 drastically reduce 

the data locality for block checkerboard partitioning, which in turn increase cache misses 

and reduce the performance realized. Had this assessment proven erroneous, then block 

checkerboard partitioning could still have been implemented. As reflected in the next 

chapter, though, this is a good design decision. 

33 See Section A. 1.3.1 
34 See Section 3.3.2. 
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The next issue considered is whether the block striped partitioning should be 

rowwise or columnwise. At an abstract level, such a decision could be arbitrary. For the 

LU application (assuming all dimensions are of equal magnitude), the communication 

requirements are the same, regardless of whether rowwise or columnwise block stripping 

is used. Likewise, the processor utilization would be no different, assuming data locality 

can be assured. And therein lies the key to this decision. Due to an implementation 

issue,35 data locality would be severely hampered if rowwise block striping were used, and 

the performance penalty would be even greater than if block checkerboard partitioning 

were used. For this reason, columnwise block striped partitioning is the method of choice. 

Figure 3-4 and Figure 3-5 provide the Z specification for the final partitioning 

scheme, implemented in modification 4.3. A "balanced process" is a process with the 

extra "weight" attribute; the nt\ and nt2 attributes are placeholders used to simplify 

expression of the specification without creating contradictions when specifying subdomain 

sizes. 

Whereas in the baseline partitioning specification, nearly half of the constraints are 

parallelizable, not even a fifth of the constraints in the new partitioning scheme are. The 

implication is that there is not as much parallelism in the new partitioning scheme as there 

was in the original; many of the statements require global knowledge that was implicit in 

the original but now must be determined at runtime. This is not of great concern, as the 

time spent partitioning the domain is negligible when compared to the time involved in 

solving the system of PDEs. 

35 We use Fortran 77 to implement this software, which does not provide for dynamic memory allocation, 
which means more memory must be allocated for each partition than is needed. Since Fortran 77 stores 
multidimensional arrays in column-major order, rowwise striping loses data locality. See Section 3.3.2 
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Balanced Process 
Process 

ntl,nt2 : JV 

weight: ffl 
weight > 0.0 

Balanced Subdomain 
Subdomain 
S|,S3 : pprocess 
t,u : process 

#LU>1 

Vp e LU • Is_Balanced_Process(p) 

xdim = 1 

ydim=#LU 

Vp e LU • (p. weight = WeighNode(p) 

Vp e LC7 • (p.nx = nx0) 

Vp e L£/ • ( p.nf, = n>>0 • round p. weighty 

\peLU 

^p.nti >ny0 
\peLU 

\peLU 

2_,q. weight 
qeLU ) 

Vpe LU • (p.nz = nz0) 

Xp.n'i = ny0   =* (Vp e LU •{p.nt2 = p.nf,)) 

S, = jp  (p e LU)A[\/q e LU • (p.weight < q.weight))} A 

[(E5,]A CorrectDown(f ,0) 

\S> -\P\ {pe LU)^{\/qe LU »(p.weight > q.weight))j\, 

[f E5,]A CorrectUp(/,0) 

[\/peLU *{p.nt2 >4))=>(\/qe LU »{q.ny = q.nt2)) 

, , u S3 = \p \(pe LU)A(\/qe LU »(p.weight < q.weight))} / 
[3peLU»{p.nt2<4))=> L JJ 

MM e 53J A Debalance(M,0,4-M.nf2) 

AssignPosition(0, Li/) 

(a) 

(b) 

Figure 3-4. Z design for final LU partitioning/load balancing. 

A tile's width is determined by multiplying the size of the global domain's y 

dimension, ny0, by the processor's fraction of the total computing power. Because 

fractional elements are nonsensical, this product is rounded to the nearest natural number. 

If, however, there are rounding errors, then one or more subdomains must have their size 

corrected. If the sum of the subdomain y dimensions is greater than the global domain's y 
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dimension, then the correction is achieved by reducing the load of the weaker processors. 

Conversely, the most powerful processors are given a greater load if the rounding errors 

resulted in too few elements. 

Next, if any tile widths are less than four elements, then some of the load balancing 

is undone. The specification for a minimum width is a legacy requirement from the 

original software [61], presumably to keep the communication overhead from dominating 

the application, and it was retained for precisely that same reason. Whereas the original 

LU had no way to prevent a tile from being fewer than four elements wide, the load 

balanced version has the recourse of correcting a violation of this constraint that had been 

caused by the load balancing process itself. 

Finally, after all corrections have been made and ny is known for each process, the 

precise boundaries of each tile can be established. 

  CorrectDown   
SLU 

aT,a\: process 

b ?:p process 

S2 :pprocess 

c : process 

S2={p\[pe {LU \({a}\Jb))]*[Vq e {LU \({a}Ub))* (p. weight < q. weight)^ (a) 

c e S2 

2j p.ntl = ny0-#b   => (a \.nt2 = a ?■««,) 
peLU ) 

X P-ntl > ny0-#b   => (a \.nt2 = a ?.ntl - l) 
peLV ) 

CorrectDown(c,{a}Ub) 

Figure 3-5. Supporting functions for Figure 3-4. 
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CorrectUp 
SLU 

a !,a\\ process 

b ?:p process 

S2 :pprocess 

c : process 

S2 = [p | [p s (LU \({a}{Jb))]*[Vq s (LU \({a}\Jb))* (p. weight > q.weight)]] (b) 

c e S2 

f 
£ p.ntl = ny0+#b 

{new 
\a\.nt, =al.nt, 

X P-n'i <ny0+#b   => (a\.nt2 = a1.ntl - l) 

CorrectUp(c,{a}l)b) 

Debalance 
SLU 

a1,a\: process 

b ? : p process 

diff ? : X 
bl: p processS2 : #7 process 

c : process 

left : JV  

S2 ={p\[pz(LU\({a}\Jb))]A[Vq <= (LU \({a}\J b))'(p.nt2 < q.nt2)]} 

c e S 
left = c.nt2 -diff ? 
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Figure 3-5 continued. 
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3.3.2. Low-Level Design & Implementation 

3.3.2.1. Low-Level Design of Partitioning and Load Balancing 

The implementation language selected, we turn to implementing block striped 

partitioning. As detailed in Section A. 1.2, implementing the partition poorly can have a 

serious performance penalty if data locality is lost. Fortran stores multidimensional arrays 

in column-major order [1:10]. This means that if we allocate the full domain size but the 

columns are not the length of the full domain, then the process' memory access patterns 

are brief periods of unit stride followed by leaps across the memory space. 

To put numbers to this, if the full domain has 64 x 64 x 64 elements, but a 

process' row is only four elements wide, and each word in the arrays is eight bytes, then 

the process strides through 32 bytes and then skip over 480 bytes before it reaches the 

next element of the array that it can use. At best, this causes a reduction in cache hits, and 

the application suffers a performance penalty. Consider, though, that the A-class problem 

size for LU requires 40 MB36 just for the problem domain, and that ABC 12 has only 

32 MB of main memory. As the process executing on ABC12 relaxes a tile,37 it cannot 

avoid thrashing to swap space. 

On the other hand, if the columns are as long as the full domain, then unit stride 

memory access is possible, thereby making greater use of data locality. And, if ABC 12 is 

responsible for half (or less) of the problem domain, then the columns for which it is not 

responsible remain in swap space, never to be touched. Clearly, since Fortran 77 is the 

36 

f3 64 elements    20DPFP words Sbytes ,,,,,,, „ 
x x = 5 x 2ix6+2+3 bytes = 5 x 2™ bytes = 40MB 

element DPFP word 
[61] 
37 See Section 2.3.1. 
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implementation language for this investigation, then columnwise block striped partitioning 

is a must. However, to quantify the performance loss incurred due to poor partitioning, 

both columnwise and rowwise block striped partitioning were implemented. 

Referring again to Figure 3-2, we examine the incremental changes made to LU in 

the course of this investigation. Each modification is a minimal change. This is to 

facilitate the isolation of errors by requiring testing of only small portions at a time. 

The change from modification 0 to modification 1 is a change in the partitioning 

scheme from block checkerboard to block striped. Specifically, modification 1 introduces 

rowwise block striping. Even if we did not wish to quantify the penalty associated with 

poor partitioning, the progression from LU's original block checkerboard partitioning to 

rowwise block striping is a safe first-step. The original LU's partitioning was such that 

there are no fewer rows than columns [61]. Changing to rowwise block striping is as 

straight-forward as changing the equations that define the dimensionality of the tiles. 

Modification la38 is also an implementation of block striped partitioning, this time 

columnwise. Besides changing the equations that define the tiles' dimensions, other 

portions of code also needed to be modified to remove the assumption that the rows are 

no wider than the columns. LU's self-verification is useful in establishing that all 

necessary changes have been made, and that the changes have not affected the correctness 

of the algorithm. 

The 2.x modifications add instrumentation to the code, providing us with insight to 

the partitioning and how much time each process spends in certain portions of the code. 

38 See Section B.2. 
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The 3.x modifications implement the load balancing algorithms, and the 4.x modifications 

deinstrument the code. 

Examination of modification 4.239 shows the implementation of the design 

specified in Figure 3-4 and Figure 3-5. Each process weighs its node in parallel with the 

others, and then an all-to-all exchange is made to give each process global knowledge 

about the system's capabilities. Once this piece of knowledge is available to each process, 

two implementation options are available: we could either make maximal use of the 

available parallelism, or each process could make the partitioning calculations for each 

process and use only what it needs. Because each process eventually needs to know the 

precise location and size of the partition on its lower-numbered neighbor (a requirement 

that recurses down to Process 1), then if each process calculates only its own partitioning 

we need to engage in more interprocess communication. Instead, we make note that these 

calculations are inexpensive and that our ICN is not a high performance network. For 

these reasons, we require each process to conduct the full calculation of the partition 

assignments. 

Most of the calculation can be mapped straight from the Z specification, using 

iterative loops instead of recursive functions. One particular requirement, though, requires 

some cleverness. We must be able to establish an ordering of the processes by their 

weight. Obviously, a sort is required. The problem, though, is that we must also preserve 

the original ordering of the processes as well. Simply copying the process' information 

and then sorting the copies is insufficient, as we want changes in the process' attributes to 

be reflected in the original. Some indirection is required, and the solution should be 
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familiar to any C programmer: pointers. Dereferencing the pointers allows us to sort the 

pointers based on the weights of the processes to which they point. 

The last modifications (1.3, 3.3, and 4.340) remove the requirement that the 

number of processors be a power-of-two. The original requirement was necessary to 

enable block-checkerboard partitioning, but with block striped partitioning, this is no 

longer required. After this last change, any number of processors up to the maximum 

permitted can be utilized. 

3.3.2.2. Language Selection 
Once the low-level design has been established, a critical implementation decision 

is the implementation language itself. The LU application was written in Fortran 77 with a 

few common extensions. The NPB 2 programmers had considered Fortran 90 but ruled it 

out due to performance concerns associated with Fortran 90 [10:6][27:85-85,285-286]. 

Unfortunately, Fortran 77 does not support dynamic memory allocation, unlike 

Fortran 90. This means that should Fortran 77 remain the implementation language, 

sufficient memory must be provided to each process to accommodate the largest 

subdomain it might be assigned [27:282]. 

The alternative to allocating enough memory on each processor for the entire 

problem is to use a different implementation language. Obviously, the prime criteria for an 

alternate implementation language are that it support dynamic memory allocation and that 

it be able to either link with the MPI libraries [9] or link with a "wrapper" routine written 

in a language that can link with the MPI libraries. Rewriting the program in C (or C++) 

would be an inefficient use of development time that could be used better elsewhere. 

39 See Section B.3. 
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Other non-Fortran languages have the same disadvantage, and possibly others. The 

remaining options, then, are Fortran 77 with oversized arrays and Fortran 90. Since a 

Fortran 90 license is unavailable for the experiments, Fortran 77 is the implementation 

language by default. 

The other complication with implementing the low-level design using Fortran 77 

instead of Fortran 90 or C/C++, besides its inability to allocate memory dynamically, is the 

lack of pointers, which we specify as a necessity in the previous subsection. We overcome 

the problem by creating pseudo-pointers. These are not real pointers, but rather an array 

that hashes to the array with process information. Instead of sorting real pointers, we sort 

the elements of the hashing array based on the weights of the processes to which they 

map. That done, we continue to use the hashing array to adjust the partition assignment 

for the least and/or most powerful processors. 

3.4. Measurement of Compute Node Performance 

Any asymmetric load balancing algorithm must have some way to determine the 

performance capabilities of each node. Decker, et.al, [22] use the run-time performance 

of the application to adjust the load dynamically. Silva [81] gets around the issue by 

decomposing the application into the finest grain possible. For our application, the 

approach in [22] is not suitable because it uses dynamic load balancing, and we are using 

static load balancing which, by definition, precludes knowledge about the run-time 

performance. The solution [81] uses is unacceptable due to the performance penalty such 

a fine-grained decomposition would have. 

40 See Section B.4. 
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isizOt = isizOl 

iargl = 1                                ! /proc/cpuinfo converted 
iarg2 = 1                                ! /proc/cpuinfo converted 
iarg3 = 4                                  ! /proc/cpuinfo converted 
weight = weighnode(iargl,iarg2,iarg3)       ! /proc/cpuinfo converted 

call MPI_ALLGATHER(weight,1,MPI_D0UBLE_PRECISI0N, 
glblw8,1,MPI_D0UBLE_PRECISI0N, 
MPI_COMM_WORLD, IERROR) 

ttlw8 =0.0 
do 3 651 loop=0,nnodes_compiled-l 

ttlw8 = ttlw8 + glblw8(loop) 
3651 continue 

sum = 0 
do 3 652 loop=0,nnodes_compiled-l 

temp = glblw8(loop)*isiz0t              ! common subexpression 
nt(loop) = temp/ttlw8                   ! nt is int, so truncated 
if (mod(temp,ttlw8)/ttlw8.ge.0.5) then 

nt(loop) = nt(loop)+l                ! correct rounding error 
endif 
sum = sum+nt(loop)                      ! to check the math later 
pointer(loop) = loop                    ! initialize pointers 

3652 continue 

sorted = .false. 
3655 if (.not.sorted) then 

sorted = .true. 
do 3656 loop=0,nnodes_compiled-2 

if (nt(pointer(loop)).gt.nt(pointer(loop+1))) then 
itemp = pointer(loop) 
pointer(loop) = pointer(loop+1) 
pointer(loop+1) = itemp 
sorted = .false. 

endif 
3656 continue 

go to 3655 
endif 
lo_end = 0                                ! steal from the poor 
hi_end = nnodes_compiled-l                 ! give to the rich 

if (sum.ne.isizOt) then                    ! nuts 
3657 if (sum.gt.isizOt) then                 ! ease the lowend's load 

nt(pointer(lo_end)) = nt(pointer(lo_end))-1 
lo_end = lo_end+l                    ! share the easement 
sum = sum-1 
go to 3 657                          ! make sure we're finished 

endif 
3658 if (sum.It.isizOt) then                  ! more work for highend 

nt(pointer(hi_end)) = nt(pointer(hi_end))+1 
hi_end = hi_end-l                    ! share the extra effort 
sum = sum+1 
go to 3 658                          ! make sure we're done 

endif 
endif 

do 3 659 loop=0,nnodes_compiled-2 
if (nt(pointer(loop)).It.4) then         ! nuts 

itemp = 4-nt(pointer(loop)) 
nt(pointer(loop)) = nt(pointer(loop))+itemp 
nt(pointer(loop+1)) = nt(pointer(loop+1))-itemp 

endif 
3659 continue 

if (nt(pointer(nnodes_compiled-l)).It.4) then ! gosh darn it 
endif                   ! do nothing ... it'll get caught below 

tpt(0) = 0 
do 3 654 loop=l,nnodes_compiled-l 

tpt(loop) = tpt(loop-1)+nt(loop-1) 
3654 continue 

ny = nt(id) 
jpt = tpt(id) 

Figure 3-6. Asymmetric load balancing implementation. 
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Instead, we consider the technique used by Snell, et. al, [82] who rely on a 

preliminary run of HINT on each node to achieve this, with the option of storing each 

nodes' result on a local file to avoid recalculation of the QUIPS rating in the future.41 The 

problem with this approach is that it is computationally expensive. Even with storing the 

result for future use, it neither scales well, nor is it cheaply portable. If new nodes are 

introduced to the system, they cannot be used for processing until they have been 

benchmarked with HINT first. Considering that the system in [82] is a network of 

workstations that are dynamically donated and removed by the workstations' owners, this 

introduces a great deal of overhead when a workstation is first donated. Further, if the 

application is ported to a new system, then the entire system must now be rated with 

HINT. 

So the question, then, is can the relative capabilities of the nodes be estimated 

without the expense of running HINT (or some other comprehensive benchmark) on each 

node first? If so, how? And, how effective is it? To answer these questions, we must 

reconsider the nature of the underlying hardware and operating system. 

3.4.1. Design 

3.4.1.1. Amortizing the Computational Cost of Classifying Nodes 

The first observation we make is recognizing that while the system as a whole is 

heterogeneous, many nodes are similar, even identical, to each other. If we could take 

advantage of this knowledge, then we have already reduced the overhead of using a 

benchmark such as HINT. 

41 See Section 2.4.3. 
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The first approach we consider is to identify the unique types of nodes and run the 

benchmark on one of each type. Then, recognizing that every node has a unique 

identification, we could build a map from node id to benchmark rating. In the case of the 

ABC, where there are four types of nodes, twelve nodes total,42 this would cut the 

overhead of running the benchmark down to one-third of the processor time. When we 

add new nodes to the system, we can add them to the map if they are identical to a node 

already in the cluster. If they are not identical to a pre-existing node, then we can execute 

the benchmark on them and then add them to the map, which is still no worse than the 

method in [82]. 

While we have reduced the overhead induced by adding nodes to the system, there 

are still problems which must be addressed. The most serious problem is that this 

approach requires human editing of a file - building the map cannot be done by the system 

unless it already knows which nodes are identical to each other, and to know which nodes 

are identical to each other, either a human must provide that information, or the system 

must determine that information by measuring the capabilities of each node. Which brings 

back the original dilemma, our desire to avoid running an expensive benchmark for each 

individual node. Related to this problem, is that this approach is unsuitable for dynamic 

addition of nodes. If a node is donated for the first time without the map being prepared 

first, then the system must still measure the new node's performance. Finally, we haven't 

improved the ease of porting to a new system! Unless the maps are published with 

documentation explaining that a node with a certain processor clocked at a certain rate has 

42 See Figure 1-1 and Table 2-2. 
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a certain rating, then researchers using a different system must build their own map from 

the ground-up. 

With Linux, though, we can actually create a map that associates system 

information with benchmark ratings. Linux, like all UNIX systems, has a directory in its 

directory tree called /proc. The files in /proc do not reside on disk, but rather are 

created by the OS and reside in main memory [98:22]. One of these files, cpuinf o, 

contains information such as the processor's manufacturer and model. While it does not 

include the rate at which the processor is clocked, it does include a performance-related 

value called "BogoMIPS." BogoMIPS, meaning "bogus MIPS," is calculated when Linux 

boots to calibrate certain timing loops used elsewhere [92]. It has been described as "how 

many times the computer can do nothing in one second" [33:19]. What benefits us is that 

when combined with the manufacturer and model information, BogoMIPS allows us to 

identify each unique type of processor. This means the map can be generated by the 

computer and that new nodes that are identical to existing nodes can be mapped without 

human intervention. Further, a map can be placed on another system without editing and 

still be useful. Finally, if a new node is added that is not mapped, then the system can use 

the information known about other nodes to estimate the mapping for the new node 

without executing the benchmark on that node. The primary shortfall is that 

/proc /cpuinf o is not available on other operating systems, not even other versions of 

UNIX. 

3.4.1.2. Benchmark Selection 
The next design consideration is the benchmark selection. We first want the 

benchmark to accurately predict the performance our application realizes on our nodes. 
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Second to this, we want the benchmark to be a general indicator of performance so that 

other programmers can make use of its measurements. 

3.4.L2.1.LINPACK 
LlNPACK [62], once the indicator of floating point performance had stressed the 

floating point and memory performance of computer systems by solving a dense system of 

linear equations. A variation continues to be used to gauge supercomputers for the 

Top500 list [89]. However, modern microprocessors are able to hold the entire data 

structure43 in today's larger caches; this has largely made LlNPACK yet another 

meaningless indicator of performance [27:332-334]. So LlNPACK neither provides a good 

prediction of our nodes' performance, nor was it ever designed to gauge integer 

performance, thus limiting its usefulness as a general metric. 

3.4.1.2.2.NPB 
There are sequential versions of NPB 2 [99] available, and they would certainly be 

a good measure of the performance we can expect out of the LU application. While 

generality is a secondary consideration, using NPB 2-serial to adjust the load for an NPB 

application is too specific, and doing so could provide unrealistic expectations for real- 

world applications. 

3.4.1.2.3.SPEC 
The SPEC benchmark suite [83] is considered to be the best general indicator of 

performance for modern microprocessors. Both integer and floating point versions are 

available, which means the suite is general enough to be used for other applications. And 

43 320 KB. 
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the most current floating point version, SPECfp95, includes benchmarks44 that should 

reveal very good indications of the performance we can expect with our application 

[27:340-344]. The downside is that, in the interest of keeping the benchmarks from being 

overtaken by improved hardware and/or compiler customizations, the SPEC benchmark 

suite is updated every few years. Thinking beyond the immediate thesis effort, switching 

to the new suites when they are released would require rebuilding the map for the entire 

system, yet failing to upgrade to the new suites would result in poor measurements for the 

newer hardware. Nevertheless, this is the best option of those considered so far. 

3.4.1.2.4.HINT 
HINT, though, has advantages over SPEC. HINT is a memory-oriented 

benchmark that constrains neither problem size, number of iterations, or running time. It 

reports "quality improvements per second" (QUIPS) that is determined by calculating the 

area under a curve to finer and finer degrees of precision. In this fashion, the problem 

continues to grow until no further improvements in the calculation can be realized. The 

benchmark can be compiled for any intrinsic data type, including integers using 8 bits, 

16 bits, 32 bits, and 64 bits, and floating point numbers using 32 bits, 64 bits, 80 bits (on 

Intel processors), and 128 bits (on processors that support quad-precision). The QUIPS 

rating reflects the processor performance for whichever data type is being evaluated, the 

memory hierarchy from LI cache to swap space, unit- and non-unit-stride memory 

performance, and numerical accuracy. So, HINT can provide a "good" indication of a 

computer's performance for memory-bound computation-intensive applications, 

44 Mesh generation, shallow water simulation, partial differential equations, Monte-Carlo computation, 
fluid-dynamics, multigrid solver in three-dimensional potential field, turbulence modeling, weather 
prediction, quantum chemistry, and Maxwell's equations. 
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regardless of its dominant data type. In particular, HINT'S results have been shown to 

correspond well with NPB's results [82]. We conclude, then, that HINT is a good metric 

both for our specific case and for general use as well. 

HINT stores the results of its calculations to disk to permit plotting the 

performance as a function of memory usage or execution time, and it also reports a single 

QUIPS value that is the integral of that plot [27:339]. It is this single QUIPS value that 

we are interested in. 

3.4.1.2.5.Quick 'n' Dirty Benchmarks 
One of our desires is to be able to measure the nodes' capabilities with as little 

overhead as is possible. So far, we have discussed doing this by amortizing the cost of 

measuring the nodes' capabilities. The method we are using to achieve this amortization is 

by creating a map from system information to the benchmark results. This rather forces us 

to ask ourselves if we're not overlooking something obvious. One of the pieces of 

information available to us from /proc /cpuinf o is the OS' measure of how fast a 

certain kind of busy loop runs [92]. As long as we're already obtaining this information, it 

costs us nothing but processor time to determine if BogoMIPS can be used to provide 

effective and cheap load balancing. In a similar vein, we can create an inexpensive routine 

that loops through a series of floating point operations to create a crude Mflops rating. 

This has the additional benefit that it is not dependent on the OS. A fall-out of being 

usable on a non-Linux OS is that we can also use this crude Mflops rating to index the 

benchmark results on other systems. 
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3.4.2. Implementation 

3.4.2.1. Language Selection 
As with the application, we must consider the implementation language for the 

measurement library. With the application, the driving consideration was that the 

application was already written in Fortran 77. With the metric library, we do not 

modifying preexisting code; rather, the library is new software, free from the constraints of 

others' implementation decisions. The only consideration is functionality. 

The first element of functionality is that it must function with the application. That 

is, the Fortran code must be able to call the metric code and receive useful data back. 

When Fortran calls a subroutine or function, it uses call-by-reference [29:96-98]. 

Obviously, writing the metric library in Fortran would satisfy the requirement that the 

application code be able to interface with the metric code. But what alternatives are 

there? We address Ada 95, Java, and ANSI C/C++. 

We can immediately rule Ada 95 out. Some Ada compilers use call-by- 

copy/restore, while others use call-by-reference [86:70]. This ambiguity does not facilitate 

integrating the software with the Fortran code. Further, if call-by-copy/restore is used, 

then we cannot interface the application software with the metric software. Java passes 

intrinsics by value and objects by reference [91:44]. Since intrinsic data types are passed 

between the application and the metric software, we can now also rule out Java. Besides 

the obvious choice of Fortran, we are now left to consider C and C++. Both C and C++ 

are call-by-value, except that the value passed can be a memory address, which effectively 

provides for call-by-reference as well [86:69-70]. 
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In the interest of abstracting the application programmer from the details of the 

metric software, we would like the metric library to offer a single interface to the 

application software that accepts certain parameters to define which measurement 

technique should be used. In this fashion, the application programmer needn't be 

concerned with the semantics of the functions that actually perform the measurements. 

Since the combination of arguments to the front-end varies, depending on the 

metric technique preferred, we must have some way to deal with the different 

arrangements of parameters. C++ (and Java & Ada 95) provide for function overloading 

[20:73]. C's stdarg library includes variable argument functions which can result in 

convoluted code to properly interpret the arguments [46:462-463]. No mention of 

variable arguments with Fortran was found in our literature review. The problem with 

C++ (as well as Java & Ada 95) is that they are object-oriented, and Fortran is not. As 

such, Fortran can not interface with the name-mangled code produced by an object- 

oriented compiler. 

Another issue is that we want to provide for identical syntax, regardless of the 

calling language. Fortran compilers append one or two underscores after subprogram 

names and assume that subprograms are compiled similarly. C compilers do not append 

underscores to subprogram names and assume the subprograms are compiled likewise. If 

the front-end (weighnode ()) is compiled with Fortran, then an application programmer 

using C must be prepared to call weighnode_ () or weighnode (), while a 

Fortran application programmer calls weighnode (). This may be considered a minor 

irritation, and one that can easily be incorporated into programmers' mindset, but it 

violates our desire that application programmers be offered identical syntax such that they 
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need not be concerned with the language in which the library is written. On the other 

hand, we need not provide such an abstraction to the library programmer. If we write the 

library in C, then we can create three front-end functions, weighnode (), 

weighnode_ (), and weighnode (), and specify that the application programmer 

always pass the arguments by reference. Then, whether the library be called from a C 

application or a Fortran application with either trailing underscore setting, and the 

application programmer always addresses it as weighnode (), not caring about the 

library's implementation language. 

Finally, the implementation language must be able to actually perform the 

measurement. Both C and Fortran, can execute the simple floating point test proposed in 

Section 3.4.1.2.5, naturally. Similarly, both are able to parse an ASCII text file, which is 

how /proc/cpuinf o appears to the program. But we would like to be able to use 

HINT - or any other benchmark we might want to try in the future - without having to 

modify its source code. So our implementation language must be able to issue commands 

to the system to initiate the benchmark, and it must be able to create a pipe to read the 

system's stdout. C's intimacy with UNIX (and by extension, Linux) [46:1-2] makes it 

ideally suited to interfacing with the OS. 

Clearly, C is the best option for implementing the NodeMetric library. It can 

interface with either a Fortran or a C application; it can provide for uniform semantics to 

the application programmer; it has facilities to interpret variable arguments; and it can 

interface with the OS to obtain the benchmark results without forcing us to recode the 

benchmark. 
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3.4.2.2. Implementation of NodeMetric Library 

As mentioned in the last section, we wish the NodeMetric library to have a single 

interface to the application with common semantics, regardless of the application 

language. This front-end to the library is are the weighnode () functions, found in 

Section C.l. All the information the application programmer needs is available in the 

weighnode. h45 file. The weighnode () functions interpret the arguments provided 

by the application programmer to call the appropriate functions that actually measure the 

nodes' performance. 

The original intent was to write only one function that calls the functions which do 

the measurement, and the other front-end functions would receive the parameters from the 

application and pass them in-turn to the primary front-end. Doing so would have 

simplified code maintenance, in that bug-fixes and the addition of features would require 

the modification of only one function. The problem, though, is that the greatest coding 

effort is in decoding the variable arguments. The secondary front-ends would not be able 

to blindly forward the arguments to the primary front-end; they must first determine which 

arguments and of what type.46 Adding features, and possibly fixing errors, would require 

changes to the variable argument decoding. So long as the secondary front-ends must 

fully decode the arguments, there is no value in them calling the primary front-end. At this 

point, code maintenance can be more easily achieved by making modifications to one of 

the functions, testing, and then copy-and-pasting the function body into the other two 

functions. This is precisely how the weighnode () functions were developed. 

45 See Section C. 1.1. 
46 The use of void pointers was attempted to avoid this obstacle, but this attempt did not solve the problem. 
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Based on the arguments passed to it, the weighnode () functions takes one of 

nineteen possible actions: 

a) For an invalid argument combination, they return a weight of zero to indicate an error. 

This value was chosen because it draws attention to the error even if the application 

programmer does not check for it, e.g., through division-by-zero. 

b) If the application programmer wishes, the front-end functions return a floating-point 

value that the application programmer passes to the front-end function. The utility of 

this feature is that it allows programmers to specify the load balancing, regardless of 

the weights the NodeMetric library could return, without altering the application 

structure. They might use this to give all nodes equal weights, for testing purposes, or 

they might find some other function that they believe provides a better metric and, 

again, they don't wish to change the application to test it. 

c) The front-end functions can call an internal function to execute the HINT benchmark 

for one of five datatypes, a short integer (short), a long integer (int), a long long 

integer (longlong), a single-precision real (float), or a double-precision real (double). 

We don't expect this option to be exercised much. 

d) The weighnode () functions can call the internal function that parses the 

/proc/cpuinf o file. Optionally, it passes the results to another internal function 

that maps the first function's output to the QUIPS value provided by one of the five 

datatypes for which we compiled HINT. 

e) The functions may call the function that provides a very simple test of the processor's 

floating point performance. In turn, this result also can be passed to a function that 

maps to a QUIPS value for one of the datatypes. 
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The library's internal functions are located in two files, metric . c47 and 

metricmap. c.48 In addition to these files are header files metric. h and 

metricmap. h, which contain the function prototypes; the header files can be included 

in any file, such as weighnode. c, that call the internal functions. The header file 

nodeinfo.h provides the data structure for the mapping functions, as well as functions to 

read and save the maps. Finally, buildmap. c is the only file that is intended to produce 

an executable file; its purpose is to build and expand the files that map from the 

inexpensive benchmarks to the HINT results. Discussion of buildmap. c is 

unnecessary, as the same issues are addressed during the discussion about 

metricmap. c. 

3.4.2.2.1. me trice 
Three functions are included in metric. c: parse_cpuinf o (), 

calc_pi (), and run_hint (). 

There is little left to discuss concerning parse_cpuinf o (). It opens 

/proc/cpuinf o for read-only, reads the file until the string "bogomips" is found, reads 

in the BogoMIPS value, closes the file, and returns the BogoMIPS value. This version 

does include some assumptions that do not hold for the general case. 

First, parse_cpuinf o () assumes there is only one processor per node - the 

function only reads the first BogoMIPS value it finds. This shouldn't be a problem, since 

all processors within an SMP node should be identical. This version also assumes the 

manufacturer and model of the processor are irrelevant. Different implementations of the 

47 See Section C.2. 
48 See Section C.3. 
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IA may provide different BogoMIPS ratings, which can be misleading. For example, the 

branch prediction scheme in AMD implementations result in higher BogoMIPS values 

than an equivalent Intel processor [92]. Further, according to van Dorst [92], similarly- 

clocked Intel 80486 and Pentium processors have similar BogoMIPS, yet the Pentium's 

floating point unit is far, far superior to that of the 80486 [14:622,679]. At this stage in 

the ABC's development, this assumption is not a problem - the difference between the 

FPU in the P5 processor core in the Pentium and the P6 processor core in the Pentium II 

is not as dramatic as is the difference between the 80486 and the P5 [14:679,699]. Should 

new implementations of the IA be introduced to the ABC, then parse_cpuinf o () will 

need to be adjusted to consider the make and model and then scale the BogoMIPS value 

appropriately before returning. 

The next function, calc_pi (), times a series of floating point calculations and 

reports back the number of floating point operations completed per second. Making use 

of the "constructive laziness" adage, that "it's almost always easier to start from a good 

partial solution than from nothing at all" [68:3], we find code that can be reused from the 

MPICH [9] distribution. Included in the example code with MPICH is a file that 

calculates the value of pi by determining the area under a curve. Removal of the parallel 

constructs from its kernel gives us a very simple test of the processor's FPU and branch 

prediction scheme (as well as the compiler's ability to optimize small loops). 

This function requires between one and thirty seconds to execute, depending on 

the number of iterations of the loops are executed. In testing calc_pi, we find that 222 

iterations provides a good value in about a second - more iterations yield similar values 

but require more time, and fewer iterations provide results that are not as good. 
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As an interesting side-note, when weighnode () calls calc_pi (), an address 

for calc_pi () to place the result of the calculation must be passed as an argument. 

Without this argument, an optimizing compiler would (and did!) recognize that pi is not 

visible outside the function, so there is no need even to calculate pi, and the entire function 

is optimized down to timing the empty space between two calls to clock (). 

The sole purpose of run_hint () is to launch the HINT benchmark and retrieve 

the single QUIPS rating that HINT provides. The initial effort is geared towards creating 

a child process that calls execv () to transmogrify into the HINT executable code. We 

are unwilling to change the source code for the benchmark because we would like to be 

able to implement other benchmarks in the future with minimal effort; this means we 

cannot explicitly pipe the output from the child to the parent process, the challenge is to 

capture the child process' stdout. It doesn't take long to discover that we are making 

our task more difficult than it need be. 

We can make use of C's ability to issue commands directly to the operating 

system. In particular, we can make use of C's ability to create a pipe between a program 

and the system command [46:397-398]. By opening a read-only pipe to the operating 

system when we issue the command to launch HINT, the information HINT places in 

stdout can be parsed by run_hint () as though it were a file, allowing us to obtain 

the QUIPS value. 

3.4.2.2.2.metricmap. c & buildmap. c 

The functions convert_parse_cpuinf o () and convert_calc__pi () 

each map the result of a simple metric to the result of a previous execution of the HINT 
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benchmark. Implementation considerations for these functions and the buildmap 

executable are so intimately related that we shall consider them both in this section. 

The first consideration is the data structure for the map files - "smart data 

structures and dumb code works a lot better than the other way around" [68:7]. Our first 

effort is implementing an elegant almost-complete binary search tree (BST) that finds the 

appropriate mapping in ^log2«) time and stores the BST on disk and in memory in such a 

fashion as to minimize disk access time and make good use of cache for large data sets. In 

the process of isolating bugs, we realize that for small n, there isn't an appreciable 

difference between searching in Oilog2n) time and 0{n) time, and that for small data sets, 

the elegant solution would spend more time accessing the disk than would reading the 

entire data set at once. For this reason, we implement a simple linear list instead. This 

does not appear be a bad decision, as testing indicates mapping the metric functions' 

outputs to a QUIPS value adds only about a second to the process of weighing a node. 

Each element of the list has seven fields - the key that the metricmap functions 

compares against their input, five values corresponding to the QUIPS that HINT produces 

for five datatypes, and a field to indicate the size of the list. 

Recognizing that the input to the metricmap functions might not correspond 

exactly to one of the keys in the list, we decide how to deal with this eventuality. Ignoring 

the problem and returning an error is not an acceptable solution. Instead, we make the 

reasonable assumption that if the input is between two known values, then the output must 

likewise be between the mapped outputs of the two known values. Lacking any better 

knowledge about the exact relationship between the input values and the output values, 

we linearly interpolate to get the output. What about extrapolation? If the input is 
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outside the range of known values, what action should be taken? Again, ignoring the 

problem is not viable. Inputs less than the smallest known value can easily be treated by 

interpolating between the smallest known value and zero - this decision is made implicit in 

the mapping functions by making the smallest value in the list zero. Inputs greater than 

the largest known value are not so easily dismissed. Extrapolating beyond the range of 

known values is not a safe practice if the nature of the relationship between inputs and 

outputs is not known. We certainly don't want to overcorrect the partitioning so as to 

make the load balance problem worse. For this reason, we do not extrapolate beyond the 

largest known value; inputs greater than that value are mapped to that largest known 

value's output. 

Finally, because the calc_pi () function can produce different outputs on the 

same processor, as a function of the number of iterations it progresses through, and as a 

function of other random activities on that processor, it is unwise to map a single value 

produced by calc_pi () to each QUIPS value. In the same vein, it is unwieldy to map 

every value calc_pi () produces to each QUIPS value for that processor. Instead, we 

take advantage of the interpolation we already incorporated. When adding a processor to 

the map, we execute parse_cpuinf o () once (since it always returns the same value), 

but we execute calc_pi () eight times over the range of "good" iteration values that 

were determined empirically. The largest and smallest of these values are used as keys to 

the QUIPS values for that processor; any runtime values that fall between this minimum 

and maximum have an output "interpolated" between two identical QUIPS ratings. 
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3.5. Design of Experiments 
The first question is the size of the problem size we wish to test. The "sample" 

and "workstation" classes can be dismissed as unsuitable for these tests because they do 

not sufficiently task the system. This leaves problem sizes A, B, and C. We have already 

demonstrated that the A-class problem only fits on ABC 12 by placing some of the unused 

memory allocation in swap space.49 The B-class problem requires 162 MB,50 and ABC12 

has only 96 MB virtual memory total.51 Since the B-class cannot be used with ABC 12, 

we therefore use the A-class to test our load balancing algorithm. 

We could blindly execute the software on every combination of two, four, and 

eight processors possible. This is not only undesirable, it is unnecessary. Since the 

processors are not all unique, we need not use every possible combination of processors to 

fully characterize the system, we could just use every unique combination of 200 MHz, 

333 MHz, 400 MHz, and 450 MHz processors. Given the finite time available for 

experiments, even this is undesirable. Instead, we need to consider exactly what we wish 

to learn. We desire to learn how the load balancing algorithm developed in Section 3.3 

affects the performance of the application for different combinations of processors. We 

can achieve this by looking at different ranges of capabilities. 

At one extreme, we would include both the 450 MHz processor and the 200 MHz 

processor. At the other extreme (for the two- and four-processor cases), we would use 

only the 450 MHz processor and 400 MHz processors. Between the two extremes, the 

least powerful node would be a 333 MHz processor. By looking at ranges of capabilities 

instead of combinations of processors, we reduce the number of combinations to test 

49 See Section 3.3.2.2. 
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down to eight: three two-processor combinations, three four-processor combinations, and 

two eight-processor combinations. 

The next question is which versions should we test? Naturally, we execute the 

unmodified code to compare results against those produced by code whose performance 

we haven't affected. Since our load balanced code uses striped partitioning, we also 

execute the unbalanced code with striped partitioning. To be able to account for the 

performance impact of overallocating memory for the partitions, we execute the code with 

this overallocation, but with each processor reporting identical weights to the load 

balancing algorithm. Finally, we test the three weighting approaches for load balancing, 

BogoMIPS, Mflops, and QUIPS. To reduce the cost of using QUIPS, we use our 

library's ability to map from the BogoMIPS rating to the QUIPS rating. 

A critical issue is how to measure performance, so that we can determine if, and 

how much, the performance has improved. Any computer engineer should emphasize that 

time is the one true measure of performance - the system that obtains the same (correct) 

solution in the least time is the fastest [64:52]. Using "million instructions per second" 

(MIPS) is generally unsuitable since it varies with the number of instructions used to 

obtain the solution, the instruction mix, and when comparing different platforms, the 

instruction set and clock rate [64:60-61]. "Million floating point operations per second" is 

only slightly better since it specifies the type of instructions we're interested in; however, 

it is still a function of the algorithm used and the underlying platform [64:64-65]. The 

authors of [34] make the case for "quality improvements per second" as a computer 

system metric, but it is particular to the HINT benchmark and cannot be used to measure 

50 1023/643=4.05. The B-class requires 4.05 times the memory required by the A-class. 
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the performance of an application. We shall use Mflops as our metric to compare the 

performance with different partitioning schemes since the underlying platform is fixed, the 

algorithm is fixed, and the LU application reports the Mflops sustained during execution. 

Our load balancing algorithm does not affect the total number of floating point operations, 

so in this case, Mflops is proportional only to the inverse of time. The reason we choose 

not to use execution time is because there are results in which the execution time of one 

case is several thousand seconds while the execution time of each of the other cases in the 

test is a couple hundred seconds. When graphing these results, if time is used, then the 

very slow case forces a scaling that hides the relative performance of the other cases. If 

Mflops is used, then the very slow case is represented as a very small value and does not 

affect the scale of the graphs. 

We also wish to know whether load balancing allows us to make use of the 

weakest processor in the cluster, or if the performance achieved with load balancing is still 

worse than the performance achieved without using that processor at all. This leads to 

tests using one, three, and seven processors in combinations that match the broadest 

combination of two, four, and eight processors, except for the absence of the 200 MHz 

processor. This is not possible with the unmodified code's checkerboard partitioning, but 

the versions with striped partitioning can still be used for these tests. 

We wish to characterize the performance of the system with more than eight 

processors in use. For this reason, we execute the code on all twelve processors and on 

51 See Table 2-2. 

70 



eleven processors (excepting the 200 MHz processor). Feedback from the results of these 

tests52 lead to tests with other numbers of processors greater than eight. 

The final two questions deal with statistical validation of our results. We need to 

determine how many executions of each test should be performed. Ideally, we run the 

tests twenty or thirty times to obtain small confidence intervals.53 However, because the 

time the tests require - particularly for the tests with fewer processors - we instead 

choose to execute each test five times, leaving the option open to run more tests if some 

results are statistically ambiguous. 

After conducting the experiments, we must analyze and present the results. When 

presenting the results in graph form, we use box plots because they provide a visual 

impression of the location, spread, and skewness of data sets, and they are particularly 

useful for comparing multiple data sets [57:206]. 

When comparing the performance obtained with load balancing against that 

obtained without, we always test the set of values obtained with load balancing against the 

best performance obtained without. Likewise, when determining whether load balancing 

permits improved performance by adding a weak processor, we compare against the best 

performance obtained without the extra processor. 

We do not report speedup using the traditional definition, "the ratio of the time 

taken to solve a problem on a single processor to the time required to solve the same 

problem on a parallel computer with/? identical processors" [48:118], because we are not 

executing LU on identical processors. Instead, the speedup we report is the ratio of the 

52 See Section 4.5. 
53 The size of the confidence interval is inversely proportional to the square root of the number of data 
points [57:265]. 
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time taken to solve a problem on p heterogeneous processors without asymmetric load 

balancing to the time required to solve the same problem on the same processors with 

asymmetric load balancing. 

We must conduct statistical tests to conclude whether the load balanced 

performance is an improvement over the best unbalanced performance or not. The 

problem that arises is that with five data points, we cannot neglect the question of whether 

the performance results are normally distributed [57:277]. Examination of the 

performance box plots suggests the data is not normally distributed, but the Lilliefors test 

for normality [57:278-280] cannot establish that the data is not normally distributed, 

either. We must, therefore, err on the side of caution, and use a test that does not rely on 

a normal distribution; specifically, we use the Wilcoxon signed rank test [57:285-288]. 

For the cases where the load balanced performance for all five data points is always 

greater than (or always less than) the best unbalanced performance, the Wilcoxon signed 

rank test allows us to conclude that the load balancing has (or has not) improved 

performance with a 0.03125 level of significance. 

Executing the tests hundreds of times until the results are tightly clustered around 

the "true" values and outliers can be isolated and dismissed would be ideal. Given that 

this is impractical, we use statistical tests to validate our results so other researchers can 

make use of the software and techniques developed in this thesis effort to make more 

efficient use of the AFIT Bimodal Cluster and other heterogeneous clusters of PCs. 

54 In the analysis, significance values are obtained from 
http://fonsg3.let.uva.nl/Service/Statistics/Signed_Rank_Test.html 
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3.6. Summary 
We opened this chapter with a discussion about how the AFIT Bimodal Cluster 

was developed. Next, the selection of the application was addressed, followed by the 

changes made to the application. This discussion began by considering the design of LU's 

original decomposition algorithm and progressed into the design and implementation of 

the partitioning algorithm we wished to test. 

Next, we looked at measuring the performance of the compute nodes, beginning 

with a discussion on how to do this better than others have in the past, followed by a 

discussion on what our options are to provide the measurement, and ending with a look at 

implementation issues. Wrapping up the chapter, we presented an outline of the 

experiments that test our load balancing scheme. 
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IV.   Results & Analysis 

In the last chapter, we discussed the development of the load balancing software 

and the design of the experiments to test the software. This chapter presents the results 

and analysis of those experiments. 

This chapter is organized as follows: Sections 4.1 through 4.4 presents the results 

of the major experiments conducted for this thesis. Section 4.5 addresses the performance 

of LU on the ABC beyond eight processors. Finally, Section 4.6 discusses some results 

tangential to the focus of this thesis effort, namely NaN exceptions that are generated for 

certain cases, the effect of non-unit stride memory access, and the experimental price- 

performance ratio. 

4.1.  One-Processor Results 
Load balancing is nonsensical when the load can be assigned only to one 

processor. The original intent was to run the one-processor case five times for only the 

450 MHz Pentium II node with checkerboard partitioning and both rowwise and 

columnwise striped partitioning, as a baseline for other comparisons. However, when 

NaN exceptions were found to have impacted the results of the four-processor and single- 

processor checkerboard partitioning cases,55 the single-processor checkerboard and 

columnwise striped partitioning cases were rerun five times on one node of each type56 to 

determine if a particular node was producing faulty results, perhaps as a result of bad 

memory. 

55 See Section 4.6.1. 
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Due to the extra demand of page faults, ABC 12 had not yet completed the second 

execution of LU by the time the other processors had finished their single-processor runs, 

and the queued executions of LU on ABC 12 were terminated. The results of this test are 

discussed in Section 4.6.1. 

4.2.  Two-Processor Results 

Three combinations of two-processors are tested; these combinations are the 

450 MHz Pentium II with either the 400 MHz Pentium II, the 333 MHz Pentium II, or the 

200 MHz Pentium. The Checkerboard partitioning case is run only once for each 

combination, as 

a) we were being cautious about spending processor time on tests that result in NaNs; 

b) the other cases which had not generated NaN exceptions indicated that the striped 

en 

partitioning was producing better performance than the checkerboard partitioning, 

and our comparison for load balancing speedup uses the best unbalanced performance; 

and 

c) for the two processor case, there is no difference in the partitioning between the 

checkerboard and rowwise striped partitioning,58 and when the exact amount of 

memory is allocated for rowwise striped partitioning, there is no performance 

difference between it and columnwise striped partitioning.59 

All other two-processor tests used the full five executions, as described in Section 3.5. 

56 ABC03, ABC09, ABC11, ABC12. 
57 See Section 4.4 

1 The LU application checkerboard partitioning divides the rows before it divides the columns [61]. 
59 See Section A. 1.2. 
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4.2.1.  1x2001x450 
Figure 4-1 is a box plot showing the megaflops performance results of the six tests 

conducted for the two-processor case, specifically for the case in which a 450 MHz 

Pentium II and a 200 MHz Pentium are used. The boxes show the interquartile ranges, 

and the "whiskers" extend to the limits of the data.60 

The "Unbalanced Checkerboard" plot is for the unmodified data partitioning 

scheme, and the "Unbalanced Col Striped" plot shows the results of changing the 

partitioning to columnwise striped partitioning, without implementing asymmetric load 

balancing. "Equal Weight" is from code that has been modified to permit asymmetric load 

balancing, but each node is weighted the same; this permits us to assess the performance 

penalty induced by allocating more than sufficient memory on each node. The last three 

plots, "B'MIPS Weight," "Mflops Weight," and "QUIPS Weight" are the results of 

applying the three different weightings to the asymmetric load balancing algorithm. 

60 As with all the cases tested, all values for this case are within the bounds of the inner fences. 
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Unbalanced Unbalanced Equal Weight B'MIPS Mflops Weight QUIPS 
Checkerboard Col Striped Weight Weight 

Figure 4-1. Performance with & without load balancing - 2 processors, 
1x200 1x450. 

Casual inspection of the Figure 4-1 shows that with processors as disparate as a 200 MHz 

Pentium and a 450 MHz Pentium II, we realize a substantial performance improvement, 

and as explained in Section 3.5, the Wilcoxon signed rank test tells us that for each of the 

weightings, there is nearly a 97% probability that the true value of the load balanced 

performance is greater than the best unbalanced performance. 

A contrast between the unbalanced case and the "equal weight" case reveals the 

penalty for excessive memory allocation is, on average, 5.0%, with a standard deviation of 

0.72%. As can be seen in Figure 4-2a, the load balancing scheme provides a performance 

boost of between 64.9% and 83.4% over the best unbalanced performance. This breaks 

out as 69.8±0.17% improvement using the BogoMIPS weighting, 82.9±0.95% 

improvement using the Mflops weighting, and 65.0±0.03% improvement using the QUIPS 

weighting. 
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Accounting for the memory penalty, we observe in Figure 4-2b that the load 

balanced code performs 72.9% to 92.3% better than the "equal weight" code with the 

memory penalty. Specifically, 78.0±0.18% for BogoMIPS, 91.7±1.00% for Mflops, and 

72.9±0.03% for QUIPS. 

(a) 

Unbalanced 
Col Striped 

B'MIPS 
Weigh! 

QUIPS 
Weight 

(b) 

Figure 4-2. Speedup over best non-load balanced performance - 2 processors, 
1x200 1x450. (a) Compared to best unbalanced time. 

(b) Compared to best unbalanced time with memory penalty. 

Given that there is such a difference in the capabilities of the two processors, might 

we have been better to not have used the Pentium? The answer, in this case, is clearly no. 
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The best performance on a single 450 MHz Pentium II is 60.17 Mflops. The worst 

performance on the 450 MHz Pentium II and 200 MHz Pentium, when load balancing is 

used, is 63.93 Mflops. Granted, this is an improvement of only 6.2%, but this is also 

contrasting the best uniprocessor performance with the worst load balanced two- 

processor performance. Using the best weighting (in this case the Mflops weighting), we 

realize a 17.8±0.61% improvement over the best uniprocessor performance. 

4.2.2.  1x3331x450 
If instead of a 200 MHz Pentium, we use a 333 MHz Pentium II in conjunction 

with a 450 MHz Pentium II, we obtain the performance indicated in Figure 4-3. Two 

aspects are immediately obvious. First, the performance gain over the unbalanced code is 

not appreciable. Second, the memory penalty is greater. 
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Figure 4-3. Performance with & without load balancing - 2 processors, 
1x333 1x450. 
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Examining Figure 4-4, we can quantify those observations. Not only is the 

performance gain over the unbalanced code unappreciable, it is nonexistant. The best load 

balanced performance is still 0.4% shy of the best unbalanced performance. 

With this combination of processors, the penalty for excessive memory allocation 

is 20.9±3.55%. Using the best performance of the equally-weighted partitioning with 

memory penalty as a baseline, the BogoMIPS weighting provides an improvement of 

15.8+3.31%, the Mflops weighting offers a 15.7±4.32% improvement, and the QUIPS 

weighting improvement is 12.5±9.55%. 

4.2.3.  1x4001x450 
The last set of two-processor tests use two processors with similar capabilities, 

namely a 400 MHz Pentium II and a 450 MHz Pentium II (Figure 4-5). 

80 



1.8 

1.6 

1.4 

1.2 

ills! nib 
0.8 

0.6 

illll 

0.4 

0.2 

(a) 

Unbalanced Unbalanced Equal Weight B'MIPS Mflops Weight QUIPS 

Checkerboard Col Striped Weight Weight 

1.8 

1.6 

1.4 

1.2 r                               r 

r 

0.8 

0.6 

0.4 

0.2 

(b) 

B'MIPS Weight Mflops Weight 

version 

Figure 4-4. Speedup over best non-load balanced performance - 2 processors, 
1x333 1x450. (a) Compared to best unbalanced time. 

(b) Compared to best unbalanced time with memory penalty. 

As with the tests in Section 4.2.2, the load balanced codes underperform the 

unbalanced code by 12.5±9.55% collectively. This is not surprising, considering the 

memory penalty averages 18.1%. Taking the memory penalty into account, though, the 

load balancing algorithm provides performance improvements between of 4.3+0.13%, 

4.5±0.12%, and 4.9±0.06% (Figure 4-6b). 
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Unbalanced Unbalanced Equal Weight B'MIPS Mf lops Weight QUIPS 
Checkerboard Col Striped Weight Weight 

Figure 4-5. Performance with & without load balancing - 2 processors, 
1x400 1x450. 

4.3. Four-Processor Results 
As with the two-processor tests, the four-processor tests made use of three 

combinations, in which the least powerful processor was a 200 MHz Pentium, a 333 MHz 

Pentium II, and a 400 MHz Pentium II, respectively. Like the uniprocessor tests, we 

found that the code with the block checkerboard partitioning was plagued with NaN 

exceptions. 
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Figure 4-6. Speedup over best non-load balanced performance - 2 processors, 
1x400 1x450. (a) Compared to best unbalanced time. 

(b) Compared to best unbalanced time with memory penalty. 

4.3.1.  1x2001x333 1x4001x450 

In the tests with one processor of each type, we observe (Figure 4-7) that the 

memory penalty is minimal, and that greater improvements are realized when load 

balancing is implemented. More specifically, the performance of the "equal weight" 

partitioning is only 3.3±0.47% less than the "unbalanced" performance. 
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Unbalanced Unbalanced Equal Weight B'MIPS Mflops Weight QUIPS 

Checkerboard Col Striped Weight Weight 

version 

Figure 4-7. Performance with & without load balancing - 4 processors, 
1x200 1x333 1x400 1x450. 

The speedup over the unbalanced code (Figure 4-8) is 60.9±0.02% when weighing 

the nodes with BogoMIPS, 69.8±1.33% when weighing with Mflops, and 83.1+0.17% 

when using QUIPS. Accounting for the memory penalty, these numbers increase to 

65.1±0.03%, 74.4±1.37%, and 87.9±0.17%, respectively. 

As with the two-processor case with the Pentium, we ask whether the low-end 

processor contributes to the performance. Since the power-of-two processors 

requirement was removed, we were able to execute LU using three processors, using a 

combination identical to the combination discussed in this section, except that the Pentium 

was not used. The results of this test are in Table D-3. 
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Figure 4-8. Speedup over best non-load balanced performance - 4 processors, 
1x200 1x333 1x400 1x450. (a) Compared to best unbalanced time. 

(b) Compared to best unbalanced time with memory penalty. 

Curiously, the performance of the code with the "memory penalty" is better than 

that for the code without the penalty.   Given the tight variance for each61 and the fact that 

the nodes were dedicated for these tests, it is difficult to attribute this reversal to 

competition for the processors. Nevertheless, the best performance for the three- 

processor case is 134.9 Mflops, using QUIPS-weighted load balancing. Using QUIPS- 

61 o2=0.00297 Mflops2 & o2=0.02052 Mflops2, respectively. 
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weighted load balancing, the four-processor case with the Pentium outperforms the best 

three-processor performance by 7.9±0.13 Mflops, or 5.9±0.10%. 

4.3.2. 1x333 2x4001x450 
The next tests replace the Pentium with a 400 MHz Pentium II; the results are 

shown in Figure 4-9. As with the two-processor tests without the Pentium, the 

performance improvement with load balancing is not appreciable. 

t=P 

Unbalanced 
Checkerboard 

Unbalanced 
Col Striped 

Equal Weight B'MIPS 
Weight 

Mflops Weight QUIPS 
Weight 

Figure 4-9. Performance with & without load balancing - 4 processors, 
1x333 2x400 1x450. 

The memory penalty for this combination is also low, 3.5±0.14%. The load 

balancing schemes do not show an improvement over the unbalanced code (Figure 4-10), 

except for one instance in which the load balanced code exceeds the best unbalanced 

performance by 0.2%. Even comparing against the best equally-weighted code with the 

memory penalty, the best load balanced performance is a 3.7% improvement; only the 

QUIPS weighting provides an improvement of 2.2±1.38%. No value from the Mflops 
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weighting is greater than the best equal-weighted performance, and the Wilcoxon test 

suggests a 69% probability that the true BogoMIPS-weighted performance is less than the 

best equal-weighted performance. 

(a) 

Unbalanced 
Col Striped 

B'MIPS 
Weight 

QUIPS 
Weight 

(b) 

B'MIPS Weight Mflopa Weight 

version 

Figure 4-10. Speedup over best non-load balanced performance - 4 processors, 
1x333 2x400 1x450. (a) Compared to best unbalanced time. 

(b) Compared to best unbalanced time with memory penalty. 

4.3.3. 3x4001x450 

The final four-processor combination uses three 400 MHz Pentium IIs and a 

450 MHz Pentium II, with the results shown in Figure 4-11. 
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Figure 4-11. Performance with & without load balancing - 4 processors, 
3x400 1x450. 

The penalty for overallocating memory is somewhat greater than it is in the other 

four-processor cases, 4.3±0.11%. Only with QUIPS weighting does the load balancing 

outperform the unbalanced code (Figure 4-12), by 4.3±0.54%; QUIPS weighting 

outperforms equal weighting by 8.8±0.56%, and Mflops weighting does by 0.8±0.37%. 

4.4. Eight-Processor Results 
The last set of tests make use of eight processors. There are two such 

combinations, one with the least powerful processor a 200 MHz Pentium, and one with 

the least powerful processor a 333 MHz Pentium II. Unlike the two- and four-processor 

tests, there are no eight-processor tests using only 400 MHz & 450 MHz Pentium IIs, as 

there are not eight such processors in the ABC. 
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Figure 4-12. Speedup over best non-load balanced performance - 4 processors, 
3x400 1x450. (a) Compared to best unbalanced time. 

(b) Compared to best unbalanced time with memory penalty. 

4.4.1.  1x2001x333 5x4001x450 

In Figure 4-13 we observe that, as with the other experiments which use the 

Pentium, the load balanced code shows considerable speedup over the unbalanced code. 

We also notice a greater range of values than was present in the tests with fewer 

processors. 
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Figure 4-13. Performance with & without load balancing - 8 processors, 
1x200 1x333 5x400 1x450. 

We observe in Figure 4-14 that the BogoMIPS weighted code has a performance 

improvement of 47.4±12.2% over the best unbalanced performance; speedup with the 

Mflops weighting offers 41.4±16.0%; and QUIPS weighting 58.9±7. 7%. Compensating 

for the 7.7±3.2% memory penalty, and the three weighting schemes provide respective 

improvements of 55.8±12.9%, 49.5±16.9%, and 68.0±8.1%. 

Once again, we check to determine if including the Pentium is better than using the 

same processors except the Pentium. The results of the seven-processor runs are in 

Table D-3. We find that the worst unbalanced seven-processor performance is still better 

than the best balanced eight-processor performance, likely due to the memory penalty. 
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Figure 4-14. Speedup over best non-load balanced performance - 8 processors, 
1x200 1x333 5x400 1x450. (a) Compared to best unbalanced time. 

(b) Compared to best unbalanced time with memory penalty. 

Using one-tailed Wilcoxon signed rank tests, we determine that there is a 68.9% 

probability that the QUIPS weighted eight-processor code has a greater performance than 

the equal weighted seven-processor code with memory penalty. However, if the seven- 

processor code is also load-balanced, then we find there is a 96.9% probability that the 

QUIPS weighted seven-processor code outperforms the QUIPS weighted eight-processor 

code. 
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4.4.2.  1x333 6x4001x450 
The performance LU realized when using eight Pentium us is provided in 

Figure 4-15. Casual observation reveals there is a noticeable penalty for allocating too 

much memory and that only the QUIPS weighted partitioning offers performance benefits. 
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Figure 4-15. Performance with & without load balancing - 8 processors, 
1x333 6x400 1x450. 

Figure 4-16 reveals that not a single instance of the load balanced code could 

outperform the unbalanced code. Even taking the 15.8±0.61% performance loss due to 

the memory penalty, neither BogoMIPS nor Mflops weightings can offer performance 

improvements. Only QUIPS does, with a 0.0625 level of significance, offering a 

3.4±3.2% improvement. 
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Figure 4-16. Speedup over best non-load balanced performance - 8 processors, 
1x333 6x400 1x450. (a) Compared to best unbalanced time. 

(b) Compared to best unbalanced time with memory penalty. 

4.5. Performance Beyond Eight Processors 
A secondary goal in this thesis effort is to characterize LU's performance in 

megaflops when using the entire ABC. Figure 4-17 shows the performance as a function 

of the number of processors, when both the 450 MHz Pentium II and the 200 MHz 

Pentium are included in the processors. Figure 4-18 shows the performance when the 

fastest combination of processors are used for each quantity. 
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Figure 4-17. Performance in megaflops as a function of number of processors: 
broadest combination of processors. 

(a) Up to network saturation, (b) Up to & past network saturation. 

Figure 4-17a shows continuous performance improvements when using load 

balancing, up to eight processors. Similarly, Figure 4-18a shows steady speedup, both 

with and without load balancing, though QUIPS weighted load balancing does show 

better performance than no load balancing. 
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Figure 4-18. Performance in megaflops as a function of number of processors: 
fastest processors, (a) Up to network saturation. 

(b) Up to & past network saturation. 

Figure 4-17b and Figure 4-18b show that beyond eight processors, performance 

decreases and the variance of the measurements increases dramatically. The explanation is 

that the ABC's ICN switch does not have unlimited capacity. Its internal capacity may 

aggregate to 6.3 Gbps, but the effective network capacity is 800 Mbps [45:78]. Since 

each process attempts to exchange information at the same time the other processes do, 

network collisions become inevitable when more than eight processes are used; nine or 
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more nodes sending information at 100 Mbps each exceed the effective network capacity 

of the switch. 

4.6.  Other Observations 

4.6.1. Not-a-Number Exceptions 
In the one- and four-processor cases, the code which uses block checkerboard 

partitioning consistently generates NaN exceptions at some point during the solution, 

which then propagate through to the rest of the solution. Handling all these exceptions 

severely reduces the performance, to say nothing of the correctness of the solution. 

As can be seen in Table D-19, this phenomenon did not always occur. Further, no 

one else has reported such a problem [100]. We are unable to determine the source of 

these NaNs. The binaries used during software development and during the experiments 

were generated with the same compilers using the same options and the same libraries on 

the same systems. During development, the code executed without exceptions using both 

the hub and the switch, which eliminates the network as a potential source of the problem. 

During experimentation, we executed the code on four different nodes, and NaNs were 

generated on all four nodes, leading us to conclude that a single node is not the source of 

the NaNs. 

4.6.2. Effect of Non-Unit Stride Memory Access 
To quantify the performance penalty of using rowwise striped partitioning,62 we 

executed LU coded for rowwise striped partitioning on eight processors, including the 

200 MHz Pentium (Figure 4-19). What we find is that, as expected, there was not a 

62 See Section 3.3.2.2. 
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performance penalty if the correct amount of memory is allocated for each tile. However, 

for the "equal weight" case, in which extra memory was allocated for load balancing, the 

effect is that the Pentium node, with its 32 MB of memory, must constantly swap data in 

and out of virtual memory, reducing the overall performance by two orders of magnitude. 

ZJ 
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Row Striped 

Unbalanced 
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version 

Equal Weight 
Row Striped 

Equal Weight 
Col Striped 

Figure 4-19. Performance with rowwise striped & columnwise striped partitioning 
8 processors, 1x200 1x333 5x400 1x450. 

4.6.3. Price-Performance 

In determining a price-performance ratio, we must determine both the price of the 

system and its specific performance. In the preceding sections, we discussed the 

performance of the ABC when running the LU application. 

To estimate the cost, we shall make three assumptions. First, each node has a 

purchase price of $2000 when new, and the switch has a purchase price of $2500 new. 

Second, the nodes' monetary value depreciates at a rate of 33% per year; the switch does 

not depreciate. This depreciation is calculated for the time during which the experiments 
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were conducted. Third, for this analysis, only the costs involved in the Linux portion are 

considered,63 and licenses for software not available for this thesis are not considered, 

either.64 This brings the system price to $21,664, as shown in Table 4-1. 

Table 4-1. Price of the AFIT Bimodal Cluster (Linux). 

Quantity Purchase 
Price 

Purchase 
Total 

Age Depreciated 
Price 

Depreciated 
Total 

200 MHz 
Pentium 

1 $2,000 $2,000 19 months $1,061 $1,061 

333 MHz 
Pentium II 

4 $2,000 $8,000 11 months $1,386 $5,544 

400 MHz 
Pentium II 

6 $2,000 $12,000 7 months $1,584 $9,504 

450 MHz 
Pentium II 

1 $,2000 $2,000 3 month $1,810 $1,810 

Switch 1 $2,500 $2,500 — $2,500 $2,500 
Software 1 $20 $20 — $20 $20 

$26,520 $20,439 

We notice that the best uniprocessor performance provides a price-performance 

ratio of $34/Mflop at the "new" price and $31/Mflop65 at the depreciated price when only 

that uniprocessor and the software is considered in the price. This demonstrates a 

potential problem with the "price-performance" statistic, namely an implied assumption 

that the objective is to obtain the best price-performance ratio when we run high 

performance applications. 

While we may be interested in achieving high performance computing at 

commodity prices, once we have the system, our objective is to obtain the best 

performance. In this case, the best performance is 370.35 Mflops using eight Pentium IIs 

63 While the Windows NT license is included with most of the nodes at purchase, there are other licenses 
for software used with Windows NT that do not impact this thesis, such as compilers and MPI 
implementations. 
64 Specifically, the price of the Fortran 90 license is not included. 
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(Section 4.4.2). When determining the price to achieve this performance, we can 

determine the price one of three ways: 

a) Use the price of just the eight nodes, the switch, and the software, 

b) Use two-thirds of the price of the entire system, or 

c) Use the price of the entire system. 

The price-performance ratio using each of these approaches is shown in Table 4-2: 

Table 4-2. Price-Performance Ratio. 

Purchase Price 
Price                 Price-Performance 

Depreciated Price 
Price                 Price-Performance 

Option (a) $18,520 $50/Mflop $15,220 $42/Mflop 
Option (b) $17,680 $48/Mflop $13,626 $37/Mflop 
Option (c) $26,520 $72/Mflop $20,439 $56/Mflop 

Since we are attempting to assess the price-performance ratio for the best 

performance achieved using the system, the best answer is the one which considers the 

price of the entire system, $56/Mflop. 

4.6.4.  Comparison with Other Platforms 
To place our best performance of 370.35 Mflops with eight processors in 

perspective, we compare this to the performance of other platforms executing the LU 

application, reported in [99]; this comparison is summarized in Figure 4-20a. An IBM SP 

(66/WN) was able to obtain 457.8 Mflops using eight processors, and an 

SGI/Cray T3E-1200 reached 610.8 Mflops with eight processors. Clearly, the ABC's 

performance is not on par with commercial supercomputers, but we expected this, 

particularly due to the ABC's commodity ICN. 

65 Rounding up to the nearest dollar. 
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So how does the ABC compare with other commodity clusters of PCs? The 

results for Los Alamos National Laboratory's Loki and NAS' Whitney clusters are also of 

interest. For eight 200 MHz Pentium Pro processors, the older Loki cluster obtained 

222.3 Mflops, and Whitney obtained 338.8 Mflops using eight 200 MHz Pentium Pro 

processors. 

Pricing for the IBM SP is on the NAS website [99], and the pricing for the 

SGI/Cray T3E [80], Loki [97], and Whitney [88] are available on their respective 

websites. This provides us with sufficient information to make a price-performance 

comparison, summarized in Figure 4-20b. 

Using the same depreciation rules as for the ABC the current of the 64-processor 

IBM SP (66/WN) is just over $1 million, and its performance is 2.68 Gflops. SGI lists the 

price of a 32-node T3E-1200 as $630,000, and its 32-processor performance is 

2.36 Gflops. The current price of the 16-node Loki is $24,683. Its best reported 

performance for LU is 453.0 Mflops using all 16 processors, yielding $55/Mflop. The 

42-node Whitney, interconnected with Fast Ethernet and Myrinet, has a current price of 

$141,330, and its 32-processor performance with LU is 418.8 Mflops. This means the 

price-performance for Whitney is $338/Mflop, using the rule that the price of the entire 

system is used. 

4.7. Analysis & Summary 

In this chapter, we discuss the performance achieved using two, four, and eight 

processors, using combinations of processors that have a broad range of capabilities and 
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that have a narrow range of capabilities, and using different weighting methods for our 

asymmetric static load balancing. 
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Figure 4-20. Comparison of systems, using LU.A. (a) Eight-processor performance. 
(b) Price-performance. 

We find that when the range of capabilities is broad, all three weightings provide 

performance improvements over the unbalanced code. When the processors are all nearly 

equal in computational power, performance improvements are seen only after accounting 

for the performance penalty due to allocating more memory than is necessary to hold the 

partitions. Even then, there is not always a net improvement. We also find that when 
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there is a broad range of processor capabilities, the weakest processor slowed down the 

arrival to the solution when using symmetric load balancing. But asymmetric load 

balancing permits all processors to contribute to the solution; the exception is the eight- 

processor case, in which the Pentium processor lessened the performance of the system 

even with asymmetric load balancing. 

We observe that in six of the eight combinations of processors considered, the 

QUIPS weighting provides the best load balancing. Exactly why this should be so is not 

entirely clear, though, as in four of these six cases, the QUIPS weighting produces the 

same partitioning as one or both of the alternate weighting schemes that QUIPS 

outperforms. We speculate this may be due to the extra code associated with the 

run_hint () function affecting memory alignment, but without further investigation, we 

can not make any such statement with certainty. 

Further discussion and conclusions that can be drawn from these results are 

presented in the next chapter. 
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V.   Conclusions & Recommendations 

As a result of this thesis effort, students and faculty at AFIT have ready access to a 

low-cost high performance computing platform for their research, software and techniques 

are available for those researchers to make more efficient use of this system, and they can 

obtain this effective load balancing with less overhead than other static assymetric load 

balancing approaches. 

But there is still more work that can be done in this field of research. The results 

& analysis presented in Chapter iv lead us to certain conclusions about the load balancing 

algorithm developed in this thesis research. We also make recommendations for future 

work with asymmetric load balancing and for the continuing development of the AFIT 

Bimodal Cluster. 

5.1. Load Balancing Conclusions 
After correcting for the penalty imposed due to overallocating memory, we find 

that the QUIPS rating consistently provides better performance than the unbalanced code, 

regardless of the range of processor capabilities, up to eight processors. If the range of 

processor capabilities is sufficiently wide, then all three weighting techniques provide an 

improvement over the unbalanced code. 

We also have determined that for the two- and four-processor cases, the load 

balancing allows us to make full use of the available processors; if load balancing were not 

used, we may realize better performance by leaving out the weakest processor. Why 

doesn't load balancing with the eight-processor case permit us to make full use of the 
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processors? The answer lies in the last row of Table D-12. Using the weights returned by 

the NodeMetric library, ABC12's "fair share" of the problem is a tile two or three 

elements wide. The load balancing algorithm is designed to reshift the balance to prevent 

any processor from having a tile less than four elements wide. So ABC 12 is still 

overtaxed, while ABC03 is not being used to its fullest extent. If this requirement were 

removed, or if we were using a larger problem size, then the partition reshifting would be 

unnecessary. Each processor would still be responsible for its fair share, and we would 

see a performance improvement over the seven-processor case. 

We also observe that we have reduced the time needed to make use of the HINT 

benchmark, when compared to the initial approach [82]. To build the maps used by the 

metricmap functions, just over forty-three hours of processor time was used to build maps 

for five intrinsic data types.66 Had we been required to execute the HINT benchmark on 

every node, even if only for the double-precision floating point version, then just over 

fifty-one hours of processor time would be required.67 Further, when new nodes are 

added to the cluster, we are not first required to execute the HINT benchmark on them, 

unlike the approach in [82]. 

5.2. Future Asymmetric Load Balancing Efforts 
The situation with comparing seven processors to eight, in which the 200 MHz 

Processor does not contribute to a faster solution, as described previously, forces us to 

reexamine why we do not permit tiles to be narrower than four elements. We suspect the 

66 528.90 min on 200 MHz Pentium; 655.95 min on 333 MHz Pentium II; 628.20 min on 400 MHz 
Pentium II; and 770.48 min on 450 MHz Pentium II. 
67 172.87 min on 200 MHz Pentium; 277.63 min on each 333 MHz Pentium II; 266.95 min on each 
400 MHz Pentium II; and 176.85 min on 450 MHz Pentium II. 
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original reason for this constraint was to prevent the use of so many processors that 

interprocessor communication destroyed the performance. So, the real constraint is not a 

lower limit on the size of the tiles, but rather an upper limit on the number of processors 

that may be used. So long as we are not exceeding this upper limit, then there is no reason 

why the weakest processor cannot be responsible for a tile narrower than four elements. 

So long as its "fair share" is a tile at least one element wide, there is no reason why the 

weakest processor could not contribute to the solution when it is not tasked with more 

than its "fair share." For this reason, the lower limit on the width of the tiles could be 

removed in the load balanced code. 

A Fortran 90 compiler does not have to overallocate memory to permit 

asymmetric load balancing. Instead, it can dynamically allocate memory at run-time, after 

the partition sizes have been determined. These tests should be run again after being 

compiled with a Fortran 90 compiler, to establish the effects of changing compilers, and 

then the application should be modified to make use of dynamic allocation. That 

accomplished, the tests should be run yet again to ascertain the effect on performance that 

asymmetric load balancing with dynamic memory allocation has. Once dynamic memory 

allocation is used, the B-class problem can be executed on the 8-processor combinations: 

ABC 12 should never be required to allocate more than 20.24 MB for a partition when 8 

processors are used to tackle the B-class problem, and this fits inside ABC12's main 

memory. 

An alternate approach that should be tried is "diffusive load balancing," described 

by Corradi, et.al. [17]. In diffusive load balacing, the workload is shifted between 
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neighboring processors if there is a load imbalance between them; gradually, a global 

balance is achieved. Using diffusive load balancing, it should be straight-forward to 

achieve an asymmetric load balance without weighing the nodes. If the time a processor 

spends in an MPI_Wait() call is above some threshold, then diffusive potential is indicated. 

After these suggested changes have been implemented and tested, two-dimensional 

load balancing also should be attempted, as described in Section A. 1.3.3. 

5.3. Development & Future Directions for the AFIT Bimodal Cluster 
The author constructed the ABC and has managed it for nearly a year. This thesis, 

along with those of other students, has made use of this expanding high performance 

computing platform. The ABC should continue to grow to permit research into larger 

problems and to accommodate a greater number of researchers. Hand-in-hand with the 

ABC's growth is the need for the hiring of a system administrator to manage the cluster. 

Even with twelve nodes, being able to effectively serve as a system administrator is 

growing beyond the time requirements for full-time graduate students. 

Scaling the interconnection network with the cluster may prove challenging, but 

the issues involved and solutions are discussed in [77]. The primary considerations are the 

latency of an individual message and the channel capacity. The authors of [77] suggest a 

tree of switches with Fast Ethernet leaves uplinked to a Gigabit Ethernet router as the best 

option considered. While they do not explicitly address the use of very large Fast Ethernet 

switches (such as by stacking multiple 24-port switches), we recommend that a tree 

structure is more appropriate, since it isolates network traffic on the leaf switches from the 

traffic on the other leaf switches (except where the traffic must cross the Gigabit Ethernet 
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link to another leaf switch), and thus should provide superior performance. A network 

simulation is needed to provide a quantitative case for a tree of switches versus stacked 

switches. 

The Linux kernel needs to be replaced or repaired. The bug in the tcp_ack () 

function can be fixed by modifying the kernel's source code and recompiling [76], but the 

TCP stack in the 2.2.x kernels has undergone several improvements [18]. This, combined 

with Linux 2.2.x's improved performance on systems with more than 16 MB of main 

memory [18] suggest upgrading the kernel is the wiser solution. 

Finally, some updated development software should be implemented. 

MPICH 1.1.2 [9] is available for beta testing now, and it is supposed to fix some errors in 

previous versions of MPICH 1.1.x. We also recently learned of the Pentium Compiler 

Group [65] which has developed patches (pgcc) to the egcs compiler suite to provide 

optimizations particular to Intel processors at the Pentium level and newer. Making use of 

pgcc compilers should offer greater performance over our current egcs compilers, as the 

egcs compilers are general compilers for any 32-bit processor that implements the Intel 

Architecture. 

5.4. Closing Thoughts 
This thesis effort has not attempted to prove or demonstrate that clusters of PCs 

are more effective or more efficient than MPPs, or even that PoPCs are sufficient 

replacements for some applications. Instead, it starts with the premises that PoPCs are 

already here in numbers, and that they are an inexpensive way to execute high 

performance computing applications. 
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From that premise, the issue this thesis addresses is how to make more efficient 

use of these clusters. Many of the traditional assumptions about supercomputing 

platforms do not hold true with commodity clusters, particularly when we realize that 

PoPCs have certain grown potentials that are not possible with the "big iron" machines, 

particularly the ability to add the most "powerful" processors to the system as money 

become available, rather than limiting growth to the addition of more processors identical 

to those already in place. 

The experiments that this document records have shown that with proper load 

balancing, computational scientists and engineers using PoPCs can efficiently use both the 

newest hardware in the system and the oldest, without the older hardware limiting the 

system's performance. In so doing, we conclude that the removal of older hardware is 

unnecessary when the newer hardware has more than twice the performance. Researchers 

are then able to get more use out of their research dollar, and obsolescence of the older 

hardware is delayed. 
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Appendix A: Supplemental LU Background Material & Analysis 

A.l. Data Partitioning 
There are several ways a matrix can be partitioned among processors, though only 

the three relevant to this thesis effort are addressed here. They are block checkerboard 

partitioning, rowwise block striping, and columnwise block striping. These are two- 

dimensional partitioning schemes; however, if the designers choose not to partition the 

z axis, as is the case with the LU application68 [61], then two-dimensional partitioning 

schemes are suitable. 

Figure A-l. Unpartitioned data set. 

Detailed discussion on block checkerboard and block striped partitioning follows 

and is summarized in Table A-l: 

68 See Section 2.3.1, [10], or [101]. 
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Table A-l. Features of Checkerboard and Striped Partitioning. 

Block Checkerboard Partitioning Block Striped Partitioning 
Primary 

Characteristic 
Decomposes domain 

along two axes 
Decomposes domain 

along one axis 
Maximum 

Number of 
Processors 

ö{n) <Xn) 

Limitations on 
Number of 
Processors 

Must be non-prime. 
Typically, power-of-two 

or square. 

No restrictions for quantities 
less than maximum. 

Communication 
Overhead 

Less overhead for greater 
numbers of processors. 

Less communication overhead 
for small numbers of processors. 

Ease of Load 
Balancing 

Difficult, but not impossible. Easier, but not trivial. 

A. 1.1. Checkerboard Partitioning 
In block checkerboard partitioning, the application partitions each x-y plane into 

smaller square or rectangular blocks (or "tiles") by partitioning the planes along both the 

x axis and the v axis [48:152]. The exact method varies from application to application. 

Given p processors partitioning an / x j matrix, and two factors, p\ and/?2 such 

that px x p2 = p, each plane is partitioned into px x p2 tiles with approximate dimensions 

/Pl x j/Pl. These dimensions are approximate because, if i and; are not evenly divisible by 

px and/?2, then some rounding may be required. As a specific example, if p is square and 

the matrix is an n x n square, then px = p2 = -Jp , and the plane is partitioned into 

■yfp x Jp square tiles, each approximately y^ on a side. 
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Figure A-2. Block checkerboard partitioning for eight processors. 

As another example, the technique used by LU is to require that/? be a power-of- 

two, and then alternately partition the x and y axes into greater powers-of-two, until all 

processors are utilized (Figure A-2). 

A. 1.2. Striped Partitioning 
Block striped partitioning can be considered a special case of block checkerboard 

partitioning, in which one of p's factors is 1. Alternately, if checkerboard partitioning is 

defined such that a processor is never assigned a complete row or column [48:152], then 

striped partitioning is a completely different mapping. Regardless, striped partitioning is a 

one-dimensional division of the matrix among the processors. We can either assign each 

processor full rows (Figure A-3) or full columns (Figure A-4) [48:151-152]. 
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Figure A-3. Rowwise block spriped partitioning for eight processors. 

From an abstract perspective, there is no fundamental difference between rowwise 

and columnwise partitioning; however, there may be performance reasons to select one 

over the other. These reasons may include minimizing processor idle time or minimizing 

communication overhead - and it may not be possible to do both. Another reason, 

particular to this thesis effort, has to do with how the implementation language stores 

matrices in memory; in this case, Fortran stores multidimensional arrays in column-major 

order [1:10]. 

A. 1.3. Choosing a Partitioning Scheme 
Why might a computational scientist/engineer select checkerboard partitioning 

over striping, or vice-versa? The two reasons most commonly cited are limits on the 

number of processors that can be used, and the communication overhead associated with 
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each. In addition to these two, another reason relevant to this research is the ease by 

which the partitioning can be adjusted. 

■■jreg-gg^gc^Tp^ 

Figure A-4. Columnwise block striped partitioning for eight processors. 

A. 1.3.1. Number of Processors to be Utilized 
A significant consideration is the number of processors amongst which the matrix 

can be divided. For annxn matrix, striped partitioning can make use of 0{n) processors, 

whereas checkerboard partitioning can utilize 0{n2) processors. As specific examples, 

consider LU's smallest and largest problem sizes. For the W-class problem, n=33, the 

problem can be divided among 64 processors using block checkerboard partitioning.69 In 

contrast, the C-class problem specifies «=162, which makes the problem 188.3 times 

larger than the W-class problem;70 yet with block striping, the application could only make 

use of 40 processors. 

69 The LU application requires that the minimum dimension on a partition be no less than four [61]. 
70 ^-«118.3 
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On the other hand, block striped partitioning does not constrain the number of 

processors used, short of the maximum. Block checkerboard partitioning schemes, at a 

minimum, require a non-prime number of processors. More typically, though, the number 

is more constrained (Table A-l). For example, the LU application requires a power-of- 

two number of processors; other applications such as SP require a square number of 

processors [10:8-9]. They can only make use of eight or nine processors out of the twelve 

available on the ABC. Looking forward, the ABC's switch can accommodate up to 

twenty-four nodes before we need to stack the switch with another;71 when the ABC does 

have twenty-four processors, both LU and SP would only be able to use sixteen. 

A.l.3.2. Communication Overhead 
Another consideration is the communication pattern. This varies from application 

to application, so here the focus is on LU. If we assume a processor can send and receive 

at the same time, that network contention is not an issue, and that the time for a message 

to propagate through the network is constant, regardless of the sender and receiver, then 

the time required to send a message over the network can be expressed as 

tcanun=t,+Km (A"1) 

where ts is the startup time required to prepare the message, tw is the per-word transfer 

time,72 and m is the number of words in the message; since the propagation time is 

constant, here ts also includes the propagation time [48:45-48]. 

In the SSOR code, each tile exchanges data with each of its neighbors every 

iteration;73 the typical tile has four neighbors in the block checkerboard case. If each 

71 See Section 3.1. 
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x-y plane has n elements on a side, there are p processors, and n is evenly divisible by 

4-yfp , then each tile has fa elements on a side. To exchange the values of the border 

elements, then, requires sending fa elements four times. An exchange requires the 

sending of five eight-byte words for each element [101:2]. Equation (A-l) then becomes 

tcmm.BC=*(ts+twm) 

5nt ^ (A-2) 

yfp 

If LU were partitioned using block striping, then each tile has at most two 

neighbors. If« is evenly divisible by Ap, then each tile measures nxfp, and exchanging 

the values of the border elements requires the transmission of n elements twice, and 

equation (A-l) becomes 

= 2(ts+5ntw) (A-3) 

If tcomm,Bc < tComm,Bs , then block checkerboard partitioning has a lower 

communication overhead for LU, and if tcommßC > tcomm,BS , then block striped partitioning 

has a lower communication overhead for LU. Algebraic manipulation leads us to 

t, > 5nt„ 
(       2\ 
1- 

(A-4) 

72 Defined as the inverse of the channel capacity in words per second. 
73 See Section 2.3.1. 
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as the determination as to whether block striping has superior communication patterns. 

When using the ABC, the interconnection network has a capacity of 100 Mbps before the 

messaging overhead (which is represented by ts). From this we can determine that 

: = {&*%£ 
_,„-»sec/   v8Wfs/     Jbytes/ 
-1U      /bit*     /byte*        /ward 

= 6.4X10-'«^ <A-5> 

Combining equations (A-4) and (A-5), we have 

t. > 3.2n 
2 

1- 
> 

msec 
(A-6) .      IP; 

For the one-processor and two-processor cases, equation (A-6) compares t„ 

against a negative value, which always evaluates to be true. In point-of-fact, though, the 

partitioning is identical for block checkerboard and block striping in the one- and two- 

processor cases, and we would expect neither to be better. For the four-processor case, 

though, ts is compared against zero, which also evaluates to be true. It stands to reason 

that in the four-processor case, block striping is superior, since the total number of words 

exchanged is the same for each scheme, but the messaging overhead occurs only half as 

often. 

For greater numbers of processors, the balance point varies as a function of the 

messaging overhead, the number of processors, and the size of the problem. 

A. 1.3.3. Load Balancing 
The remaining consideration, which that played a dominant role in this thesis 

effort, is the the ability to manipulate the size of the partitions. For block striping, the 
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sizes can be manipulated by "merely" adjusting the dimension along the partitioned axis 

(Figure A-5b). For block checkerboard partitioning, the task is not as straight-forward. 

(a) (b) 

Figure A-5. Asymmetric load balancing using block striped partitions on the 
x-y plane, (a) Unbalanced, (b) Balanced. 

One approach is to use block-checkerboard as a first estimate of the load balance, 

and then completely abandoning a clearly-defined partitioning scheme, making the tiles 

irregular shapes by adding and removing elements until each tile has an appropriate 

number of elements (Figure A-6b). The greatest problem here is that the entire CFD 

engine would have to be rewritten to accommodate the irregular shapes, both for 

computation and communication. 

117 



(a) 

(b) (c) 

11111111 irrnc 

(d) (e) 

Figure A-6. Asymmetric load balancing using block checkerboard partitions on the 
x-y plane, (a) Unbalanced, (b) No fixed tile shape, (c) Fixed column width; row 
width varies within each column, (d) Variable column width; row width varies 

within each column, (e) Variable column width; row width varies globally. 
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The next approach that we might try is to fix the column widths, and within each 

column, adjust the row widths to achieve a balance in that column.74 The most obvious 

problem is that this does not provide a global load balance. So we might use the 

aggregate capabilities of each column to adjust the width of the columns, and then adjust 

the row widths within each column, providing a better global load balance. The problem 

with both approaches in this paragraph is that they violate an assumption in the LU code, 

namely that each tile has at most one neighbor on each edge [61]. Overcoming this 

obstacle is not as difficult as rewriting the entire CFD engine, but it in the interest of 

incrementally modifying the application so as to improve our ability to isolate errors and 

unexpected behavior, we do not wish to make too many changes at once. 

The final approach to load balancing a block checkerboard partitioned problem is 

to use the aggregate capabilities of each column to adjust the width of the columns, and 

then use the aggregate capabilities of each row to adjust the width of the entire rows 

instead of within each column. This is only somewhat more challenging than load 

balancing a block striped problem, but it does not provide as good of a load balance as is 

possible with the block striped partitioning. Nonetheless, if the communication overhead 

makes block striped partitioning undesirable, or if the number of processors to be used is 

greater than can be used with block striping, then block checkerboard partitioning with 

this last load balancing approach is the preferred technique. 

74 In this paragraph, the terms "row" and "column" may be reversed - it is more convenient to use these 
terms than "dimension A" and "dimension B," 
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A.2. Finite Difference Method 
As might be expected, a system of partial differential equations must be discretized 

to be solved on a computer. The method briefly described here is the finite difference 

method (FDM). This is only a cursory treatment to aid the reader who is completely 

unfamiliar with computational fluid dynamics. Algorithms to solve the system of 

equations are not provided. Further, the description here is done in two dimensions for 

simplicity; the NPB LU simulated CFD application is a three-dimensional problem. A full 

treatment can be found in [7]. 

Table A-2. Advantages and disadvantages to 
higher-order accuracy with the finite difference method. 

Advantages Disadvantages 
May require a smaller number of grid points to Requires more compute time because there are 
obtain a solution of the same accuracy, reducing the more difference quotients to compute. 
overall computation time. 
Often produces higher-quality solutions for certain Requires more compute time because each 
scenarios. difference quotient requires more calculations than 

the lower-order difference quotients. 
By requiring access to grid points farther away 
from the grid point being evaluated, requires more 
communication between compute nodes when 
updating the boundary conditions between 
subdomains (not included in [7]). 

[7:128,132,135-137]. 

In the finite difference method, partial derivatives are replaced with algebraic 

difference quotients, or finite differences. Generally, this is based on Taylor's series 

expansions. A critical question is the degree of accuracy to be used in the expansion. 

Many consider first-order accuracy is insufficient for CFD applications. Second-order 

accuracy is considered quite sufficient for most CFD applications, though there are 

advantages and disadvantages to going to higher-order accuracy. 
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To consider how much the complexity of the FDM evaluation grows when going 

to higher-order accuracy, consider the growth from first-order accuracy to second-order 

accuracy in two dimensions. First, the first-order equations: 

First-order forward 
difference with 
respect to x 

\dx)i4 Ax 
i*. 

im 

First-order fefax        «^-0 
rearward difference     \?dxf.-■. **'        &x 
with respect to x 

i-W 

W 

First-order forward 
difference with 
respect to y 

du "i^-"ij 

m 

^^Ü. ^1/ .*?• 

4? 

v 

First-order forward 
difference with 
respect to y 

\3y),, "       Ay 

m>. 
Figure A-7. First-order finite-difference expressions. [7:130-136] 

Second-order accuracy makes use of the four first-order difference quotients and 

introduces five second-order difference quotients: 
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Second-order 
central difference 
with respect to x 

Wy             2 Ax 
4 -,ä J* ,. w if i+lj 
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central second 
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Figure A-8. Second-order finite-difference expressions. [7:130-136] 

Clearly, increasing the accuracy dramatically increases the computational demands 

for a solution. The increased demand is not merely in the extra difference quotients that 

most be calculated, but in the increased complexity of the extra equations. The first-order 

terms each require two floating point operations, a subtraction and a division. In contrast, 

the second-order terms each require between four and seven floating point operations. 
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Extending to three dimensions makes the contrast even more dramatic: only two 

terms are added for first-order accurate solutions, as opposed to six additional terms   for 

second-order accurate solutions. 

75 Two first-order terms, and four second-order terms. 
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Appendix B: NAS Parallel Benchmarks - Changes 

The original source code is available from [99]. The modified source code is 

stored on the ABC in the /home/cbohn/thesis directory, and it is also available 

directly from the author (see Vita for contact information). 

B.l. diff -r NPB-baseline NPB-modO 
Only in NPB-baseline: BT 
Only in NPB-baseline: CG 
Only in NPB-baseline: EP 
Only in NPB-baseline: FT 
Only in NPB-baseline: IS 
diff -r NPB-baseline/LU/Makefile NPB-modO/LU/Makefile 
7c7 
< OBJS = lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o neighbors.o \ 

> OBJS = lu_wrapper.o lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o neighbors.o \ 
27a28,30 
> 
> lu_wrapper.o:       lu_wrapper.c 
> ${CCOMPILE} lu_wrapper.c 
diff -r NPB-baseline/LU/init_comm. f NPB-modO/LU/init_comm.f 
31c31 
< call MPI_INIT( IERROR ) 

> c      call MPI_INIT( IERROR ) 
diff -r NPB-baseline/LU/lu.f NPB-modO/LU/lu.f 
47c47,48 
< program applu 

> subroutine applu 
> c     program applu 
Only in NPB-modO/LU: lu_wrapper.c 
Only in NPB-baseline: MG 
Only in NPB-baseline: MPI_dummy 
diff -r NPB-baseline/Makefile NPB-modO/Makefile 
9,15c9,15 
< BT: bt 
< bt: header 
< cd BT; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
< 
< SP: sp 
< sp: header 
< cd SP; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 

> #BT: bt 
> #bt: header 
> #    cd BT; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
> 
> #SP: sp 
> #sp: header 
> #    cd SP; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
21,39c21,39 
< MG: mg 
< mg: header 
< cd MG;    $(MAKE)   NPROCS=$(NPROCS)   CLASS=$(CLASS) 
< 
< FT:    ft 
< ft:   header 
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< cd FT; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
< 
< IS: is 
< is: header 
< cd IS; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
< 
< CG: eg 
< eg: header 
< Cd CG; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
< 
< EP: ep 
< ep: header 
< Cd EP; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 

> #MG: mg 
> #mg: header 
> # cd MG; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
> 
> #FT: ft 
> #ft: header 
> # cd FT; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
> 
> #IS: is 
> #is: header 
> # cd IS; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
> 
> #CG: cg 
> #cg: header 
> # cd CG; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
> 
> #EP: ep 
> #ep: header 
> # cd EP; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS) 
59,60c59,e0 
< - rm bin/sp.* bin/lu.* bin/mg.* bin/ft.* bin/bt.* bin/is.* bin/ep.* bin/cg.* 
< 

> #    - rm bin/sp.* bin/lu.* bin/mg.* bin/ft.* bin/bt.* bin/is.* bin/ep.* bin/cg.i 

> - rm bin/lu.* 
Only in NPB-baseline: SP 
Only in NPB-baseline/config: NAS.samples 
diff -r NPB-baseline/config/make.def NPB-modO/config/make.def 
40c40 
< FMPI_LIB  = -L/usr/mpich/lib/LINUX/ch_p4 -lmpi -lfmpi 

> FMPI_LIB  = -L/usr/mpich/lib/LINUX/ch_p4 -lmpi 
50c50 
< FFLAGS      = -O 

> FFLAGS      = -fno-second-underscore -0 
Only in NPB-baseline/config: make.def.template 
Only in NPB-baseline/config: make.dummy 
diff -r NPB-baseline/config/suite.def NPB-modO/config/suite.def 
14,22cl4,29 
< # The following example builds 1 processor sample sizes of all benchmarks. 
< ft s 1 
< mg S 1 
< sp S 1 
< lu S 1 
< bt S 1 
< is S 1 
< ep S 1 
< cg S 1 

> lu W 1 
> lu W 2 
> lu W 4 
> lu W 8 
> lu A 1 
> lu A 2 
> lu A 4 
> lu A 8 
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>  lu B 1 
>  lu B 2 
>  lu B 4 
> lu B 8 
>  lu C 1 
>  lu C 2 
>  lu C 4 
>  lu C 8 
Only in NPB-baseline/config: suite.def.template 
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B.2. diff -r NPB-modO NPB-modla 
diff -r NPB-modO/LU/applu.incl NPB-modla/LU/applu.incl 
6a7,21 
> c 
> c     MODIFICATIONS 
> c    5 Dec 98 — Changed declaration of the buf & bufl arrays 
> c to accomodate columnwise block striping 
> c -- Necessary since the original declarations were 
> c for (5,2*isiz2*isiz3), but this was under the 
> c assumption (design) that isiz2.ge.isizl 
> c -- This was okay for original block-checkerboard 
> c partitioning 
> c -- This was okay for rowwise block striping 
> c -- This is not a valid assumption for columnwise 
> c block striping 
> c 
> c  
> c  
140,141cl55,160 
< double precision buf(5,2*isiz2*isiz3) , 
< > bufl(5,2*isiz2*isiz3) 

> c  MODIFICATIONS   (modla)> 
> c double precision    buf(5,2*isiz2*isiz3), 
> c > bufl(5,2*isiz2*isiz3) 
> double precision buf(5,2*isizl*isiz3), 
> > bufl(5,2*isizl*isiz3) 
> c </M0DIFICATIONS (modla)> 
diff -r NPB-modO/LU/exchange_4.f NPB-modla/LU/exchange_4.f 
8a9,23 
> c 
> c     MODIFICATIONS 
> c    8 Dec 98 — Changed declaration of the g & h arrays 
> c to accomodate columnwise block striping 
> c -- Necessary since the original declarations were 
> c for (0:isiz2+l,0:isiz3+l), but this was under the 
> c assumption (design) that isiz2.ge.isizl 
> c -- This was okay for original block-checkerboard 
> c partitioning 
> c -- This was okay for rowwise block striping 
> c -- This is not a valid assumption for columnwise 
> c block striping 
> c 
> c  
> c  
22,23c37,42 
< double precision g(0:isiz2+l,0:isiz3+l) , 
< >       h(0:isiz2+l,0:isiz3+l) 

> c MODIFICATIONS (modla)> 
> c     double precision  g(0:isiz2+l,0:isiz3+l), 
> c     >       h(0:isiz2+l,0:isiz3+l) 
> double precision  g(0:isizl+1,0:isiz3+l), 
> >       h(0:isizl+l,0:isiz3+l) 
> c </MODIFICATIONS (modla)> 
diff -r NPB-modO/LU/exchange_5-f NPB-modla/LU/exchange_5.f 
8a9,27 
> c 
> c MODIFICATIONS 
> c 8 Dec 98 — Changed declaration of the g array 
> c to accomodate columnwise block striping 
> c -- Necessary since the original declarations were 
> c for (0:isiz2+l,0:isiz3+l), but this was under the 
> c assumption (design) that isiz2.ge.isizl 
> c -- This was okay for original block-checkerboard 
> c partitioning 
> c -- This was okay for rowwise block striping 
> c -- This is not a valid assumption for columnwise 
> c block striping 
> c -- Actually, I doubt this will have any impact, since 
> c this is north-south comm, and with columnwise block 
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> c striping, there is but one row, but it is necessary 
> c to provide a good interface with pintgr() 
> c 
> c  
> c  
22c41,44 
< double precision g(0 : isiz2+l,0:isiz3 + l) 

> c MODIFICATIONS (modla)> 
> c     double precision g(0:isiz2+l,0:isiz3+l) 
> double precision g(0:isizl+l,0:isiz3+l) 
> c </MODIFICATIONS (modla)> 
diff -r NPB-modO/LU/exchange_6.f NPB-modla/LU/exchange_6.f 
8a9,23 
> c 
> c     MODIFICATIONS 
> c    8 Dec 98 -- Changed declaration of the g array 
> c to accomodate columnwise block striping 
> c -- Necessary since the original declarations were 
> c for (0:isiz2+l,0:isiz3+l), but this was under the 
> c assumption (design) that isiz2.ge.isizl 
> c — This was okay for original block-checkerboard 
> c partitioning 
> c — This was okay for rowwise block striping 
> c -- This is not a valid assumption for columnwise 
> c block striping 
> c 
> c  
> c  
22c37,40 
< double precision    g(0:isiz2+l,0:isiz3+l) 

> c  MODIFICATIONS   (modla)> 
> c     double precision g(0:isiz2+l,0:isiz3+l) 
> double precision g(0:isizl+1,0:isiz3+l) 
> c </MODIFICATIONS (modla)> 
diff -r NPB-modO/LU/pintgr.f NPB-modla/LU/pintgr.f 
8a9,23 
> c 
> c     MODIFICATIONS 
> c    8 Dec 98 -- Changed declaration of the phil & phi2 arrays 
> c to accomodate columnwise block striping 
> c — Necessary since the original declarations were 
> c for (0:isiz2+l,0:isiz3+l), but this was under the 
> c assumption (design) that isiz2.ge.isizl 
> c -- This was okay for original block-checkerboard 
> c partitioning 
> c — This was okay for rowwise block striping 
> c — This is not a valid assumption for columnwise 
> c block striping 
> c 
> c  
> c  
24,25c39,44 
< double precision phil (0 :isiz2+l,0:isiz3+l) , 
< > phi2(0:isiz2+l,0:isiz3+l) 

> c MODIFICATIONS   (modla)> 
> c double precision    phil(0:isiz2+l,0:isiz3+l), 
> C > phi2(0:isiz2+l,0:isiz3+l) 
> double precision phil(0:isizl+1,0:isiz3+l), 
> > phi2(0:isizl+l,0:isiz3+l) 
> c </MODIFICATIONS (modla)> 
59c78,81 
< do i = 0,isiz2+l 

> c <MODIFICATIONS> 
> c     do i = 0,isiz2+l 
> do i = 0,isizl+1 
> c </MODIFICATIONS> 
126cl48,151 
< do  i  =  0,isiz2+l 
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> c <MODIFICATIONS> 
> c     do i = 0,isiz2+l 
> do i = 0,isizl+l 
> c </MODIFICATIONS> 
205c230,233 
< do i = 0,isiz2+l 

> c <MODIFICATIONS> 
> c     do i = 0,isiz2+l 
> do i = 0,isizl+l 
> c </MODIFICATIONS> 
diff -r NPB-modO/LU/proc_grid.f NPB-modla/LU/proc_grid.f 
8a9,27 
> c 
> c     MODIFICATIONS 
> c    2 Dec 98 — Changed block-checkerboard partitioning to 
> c rowwise block striping 
> c — This may affect performance 
> c — This will require fewer changes than would be 
> c demanded if I were to keep block-checkerboard and 
> c tried to work with different-sized blocks 
> c -- All this code assumes at most one neighbor node in 
> c each direction -- I can continue to assure that with 
> c block-striping, so I don't have to modify the code 
> c to accept multiple neighbors 
> c    4 Dec 98 -- Changed rowwise block striping to 
> c columnwise block striping 
> c — This should improve performance over rowwise block 
> c striping (locality) 
> c 
> c  
> c  
20,21c39,44 
< c  set up a two-d grid for processors: column-major ordering of unknowns 
< c  NOTE: assumes a power-of-two number of processors 

> cXXXset up a two-d grid for processors: column-major ordering of unknownsXXXX 
> cXXXNOTE: assumes a power-of-two number of processorsXXXXXXXXXXXXXXXXXXXXXXXX 
> c 
> c    set up a one-d grid (a row, if you will) for processors 
> c    NOTE: no longer assumes a power-of-two number of processors, but 
> c    I'm not going to change this official requirement 
25,27c48,54 
< xdim  = 2**(ndim/2) 
< if (mod(ndim,2).eq.l) xdim = xdim + xdim 
< ydim  = num/xdim 

> c MODIFICATIONS (modla)> 
> c     xdim  = 2**(ndim/2) 
> c     if (mod(ndim,2).eq.1) xdim = xdim + xdim 
> c     ydim  = num/xdim 
> c 
> c     row   = mod(id,xdim) + 1 
> c     col   = id/xdim + 1 
29,30c56,60 
< row   = mod(id,xdim) + 1 
< col   = id/xdim + 1 

> xdim = 1 
> ydim = num 
> row = 1 
> col  = id + 1 
> c </MODIFICATIONS (modla)> 
diff -r NPB-modO/sys/setparams.c NPB-modla/sys/setparams.c 
7c7,13 
< * the number of nodes and class for which a benchmark is being built. 

> * the number of nodes and class for which a benchmark is being built. 
> 
> * MODIFICATIONS 
> * 2 Dec 98 — Changed write_lu_info() to accomodate the change from 
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> * block-checkerboard partitioning to rowwise block striping 
> * 4 Dec 98 — Changed write_lu_info () to accomodate the change from 
> * rowwise block striping to columnwise block striping 
448a455 
> /* MODIFIED 2 Dec 98 by cb */ 
466,468c473,478 
< xdiv = ydiv = ilog2(nprocs)/2; 
< if (xdiv+ydiv != ilog2(nprocs)) xdiv += 1; 
< xdiv = ipow2(xdiv); ydiv = ipow2(ydiv); 

> /* MODIFICATIONS (modla)> */ 
> /*  xdiv = ydiv = ilog2(nprocs)12;   */ 
> /*       if (xdiv+ydiv != ilog2(nprocs)) xdiv += 1; */ 
> /*  xdiv = ipow2(xdiv); ydiv = ipow2(ydiv); */ 
> xdiv = 1; ydiv = nprocs; 
> /* </MODIFICATIONS (modla)> */ 
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B.3. diff -r NPB-modla NPB-mod4.2 
diff -r NPB-modla/LU/Makefile NPB-mod4.2/LU/Makefile 
7,llc7,12 
< OBJS = lu_wrapper.o lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o neighbors.o 
\ 
< nodedim.o subdomain.o setcoeff.o sethyper.o setbv.o exact.o setiv.o \ 
< erhs.o ssor.o exchange_l.o exchange_3.o exchange_4.o exchange_5.o \ 
< exchange_6.o rhs.o 12norm.o jacld.o blts.o jacu.o buts.o error.o \ 
< pintgr.o verify.o ${COMMON}/print_results.o ${COMMON}/timers.o 

> OBJS = lu_wrapper.o lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o \ 
> neighbors.o nodedim.o subdomain.o setcoeff.o sethyper.o setbv.o \ 
> exact.o setiv.o erhs.o ssor.o exchange_l.o exchange_3.o exchange_4.o \ 
> exchange_5.o exchange_6.o rhs.o 12norm.o jacld.o blts.o jacu.o buts.o \ 
> error.o pintgr.o verify.o ${COMMON}/print_results.o ${COMMON}/timers.o \ 
> get_name.o weighnode.o metric.o metricmap.o 
31a33,35 
> get_name.o:  get_name.c 
> ${CCOMPILE} get_name.c 
> 
62c66,67 
< subdomain.o: subdomain.f applu.incl npbparams.h mpinpb.h 

> subdomain.o: subdomain.f applu.incl npbparams.h mpinpb.h \ 
> ../metric/weighnode.h ../metric/metric.h ../metric/metricmap.h 
diff -r NPB-modla/LU/blts.f NPB-mod4.2/LU/blts.f 
13al4,20 
> c 
> c     MODIFICATIONS 
> c    21 Dec 98 -- Added "upshot" instrumentation 
> c    22 Dec 98 -- Thinned out "upshot" instrumentation 
> c 
> c  
> c  
54a62,64 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(12,0,"Start Exchange") 
> c </MODIFICATIONS (mod2.x)> 
55a66,68 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT{13,0,"End Exchange") 
> c </MODIFICATIONS (mod2.x)> 
255a269,271 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(12,0,"Start Exchange") 
> c </MODIFICATIONS (mod2.x)> 
256a273,275 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(13,0,"End Exchange") 
> c </MODIFICATIONS (mod2.x)> 
diff -r NPB-modla/LU/buts.f NPB-mod4.2/LU/buts.f 
13al4,20 
> c 
> c     MODIFICATIONS 
> c    21 Dec 98 -- Added "upshot" instrumentation 
> c    22 Dec 98 -- Thinned out "upshot" instrumentation 
> c 
> c  
> c 7  
55a63,65 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(12,0,"Start Exchange") 
> c </MODIFICATIONS (mod2.x)> 
56a67,69 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(13,0,"End Exchange") 
> c </MODIFICATIONS (mod2.x)> 
255a269,271 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(12,0,"Start Exchange") 
> c </MODIFICATIONS (mod2.x)> 
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256a273,275 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(13,0,"End Exchange") 
> c </MODIFICATIONS (mod2.x)> 
Only in NPB-mod4.2/LU: get_name.c 
diff -r NPB-modla/LU/rhs.f NPB-mod4.2/LU/rhs.f 
8a9,15 
> c 
> C     MODIFICATIONS 
> c    21 Dec 98 -- Added "upshot" instrumentation 
> c    22 Dec 98 -- Thinned out "upshot" instrumentation 
> c 
> c  
> c  
60a68,70 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(12,0,"Start Exchange") 
> c </MODIFICATIONS (mod2.x)> 
61a72,74 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(13,0,"End Exchange") 
> c </MODIFICATIONS (mod2.x)> 
215a229,231 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(12,0,"Start Exchange") 
> c </MODIFICATIONS (mod2.x)> 
216a233,235 
> c MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(13,0,"End Exchange") 
> c </MODIFICATIONS (mod2.x)> 
diff -r NPB-modla/LU/ssor.f NPB-mod4.2/LU/ssor.f 
7a8,20 

MODIFICATIONS 
11 Dec 98 -- Added some instrumentation to display underlying 

information about each node 
21 Dec 98 -- Refined instrumentation to display underlying 

information about each node 
-- Added "upshot" instrumentation 

98 -- Thinned out "upshot" instrumentation 
98 -- Moved "print" instrumentation to subdomain() 

4 Jan 99 — Removed instrumentation 

22 
23 

Dec 
Dec 

> c— 
29a43, 48 
> c MODIFICATIONS (mod3.x)> 
> cc MODIFICATIONS (mod2.x)> 
> c     character*32 p_name 
> c     integer n_len 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod3.x)> 
59a79,105 
> c MODIFICATIONS (mod4.x)> 
> cc  MODIFICATIONS (mod2.x)> 

call MPE_INIT_LOG 
if (id.eq.O) then 

call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 

call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 
call MPE_DESCRIBE_ 
call MPE_DESCRIBE. 
call MPE_DESCRIBE. 
call MPE_DESCRIBE 

> c 
> c 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 
> cc 

STATE(1,2,"SSOR","2x2") 
STATE(3,4,"Lower Triangle","dllines3") 
STATE(5,6,"Upper Triangle","drlines3") 
.STATE(8,9, "L2-Norm", "dimple3") 
STATE(10,11,"SS Residuals","vlines3") 
.STATE (12,13, "Exchange", "black") 
STATE(14,15,"Synchronize","boxes") 

.STATE (1,2, "SSOR", "blue") 

.STATE (3, 4, "Lower Triangle", "red") 
STATE(5,6,"Upper Triangle","green") 
STATE(8,9,"L2-Norm","yellow") 
STATE(10,11,"SS Residuals","pink") 
STATE(12,13,"Exchange","purple") 
STATE(14,15,"Synchronize","orange") 
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cc 
c 
c 
c 
c 
cc 

call MPE_DESCRIBE_STATE(3,4,"Lower Triangle","black") 
call MPE_DESCRIBE_STATE(5,6,"Upper Triangle","white") 
call MPE_DESCRIBE_STATE(10,11,"SS Residuals","gray") 

endif 
0,"Start RHS") call MPE_LOG_EVENT(10 

> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
60al07,lll 
> c MODIFICATIONS (mod4.x)> 
> CC <MODIFICATIONS (mod2.x)> 
> cc     call MPE_LOG_EVENT(11,0,"End RHS") 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
64all6,120 
> c MODIFICATIONS (mod4.x)> 
> cc MODIFICATIONS (mod2.x)> 
> cc     call MPE_LOG_EVENT(8,0,"Start L2Norm") 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
67al24,128 
> c <MODIFICATIONS (mod4.x)> 
> cc <MODIFICATIONS (mod2.x)> 
> cc     call MPE_LOG_EVENT(9,0,"End L2Norm") 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
76cl37,142 

> c MODIFICATIONS (mod4.x)> 
> cc MODIFICATIONS (mod2.x)> 
> c      call MPE_LOG_EVENT(14,0, 
> cc  </MODIFICATIONS   (mod2.x)> 
> c  </MODIFICATIONS   (mod4.x)> 
77al44,148 
> c   <MODIFICATIONS   (mod4.x)> 
> CC   MODIFICATIONS   (mod2.x)> 
> c call   MPE_LOG_EVENT(15,0, 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
83al55,159 

'Start Barrier") 

"End Barrier" 

c  MODIFICATIONS   (mod4.x)> 
cc  MODIFICATIONS   (mod2.x)> 
cc call  MPE_LOG_EVENT(1,0,"Start  SSOR") 
cc  </MODIFICATIONS   (mod2.x)> 
c  </MODIFICATIONS   (mod4.x)> 

115al92,196 
> c  MODIFICATIONS   (mod4.x)> 
> cc  <MODIFICATIONS   (mod2.x)> 
> c call  MPE_LOG_EVENT(3,0,"Start  LT") 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
133c214,224 
< 

c MODIFICATIONS (mod4.x)> 
cc MODIFICATIONS (mod2.x)> 
c     call MPE_LOG_EVENT(4,0,"End LT") 
cc </MODIFICATIONS (mod2.x)> 
c </MODIFICATIONS (mod4.x)> 

c <MODIFICATIONS (mod4.x)> 
> cc MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(5,0,"Start UT") 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
150a242,246 
> c MODIFICATIONS (mod4.x)> 
> cc MODIFICATIONS (mod2.x)> 
> c     call MPE_LOG_EVENT(6,0,"End UT") 
> cc </MODIFICATIONS (mod2.x)> 
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> c </MODIFICATIONS. (mod4.x)> 
170a267,271 
> c <MODIFICATIONS (mod4.x)> 
> cc MODIFICATIONS (mod2.x)> 
> cc     call MPE_LOG_EVENT(8,0,"Start L2Norm") 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
173a275,279 
> c MODIFICATIONS (mod4.x)> 
> cc <MODIFICATIONS (mod2.x)> 
> cc     call MPE_LOG_EVENT(9,0,"End L2Norm") 
> cc  </MODIFICATIONS   (mod2.x)> 
> c   </MODIFICATIONS   (mod4.x)> 
183a290,294 
> c  MODIFICATIONS   (mod4.x)> 
> cc  MODIFICATIONS   (mod2.x)> 
> c call  MPE_LOG_EVENT(10,0,"Start  RHS") 
> cc  </MODIFICATIONS   (mod2.x)> 
> c  </MODIFICATIONS   (mod4.x)> 
184a296,300 
> c  <MODIFICATIONS   (mod4.x)> 
> cc  <MODIFICATIONS   (mod2.x)> 
> c call  MPE_LOG_EVENT(11,0,"End  RHS") 
> cc  </MODIFICATIONS   (mod2.x)> 
> c  </MODIFICATIONS   (mod4.x)> 
190a307,311 
> c  MODIFICATIONS   (mod4.x)> 
> cc  MODIFICATIONS   (mod2.x)> 
> cc     call MPE_LOG_EVENT(8,0,"Start L2Norm") 
> cc </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
193a315,319 
> c <MODIFICATIONS (mod4.x)> 
> cc <MODIFICATIONS (mod2.x)> 
> cc     call MPE_LOG_EVENT(9,0,"End L2Norm") 
> CC </MODIFICATIONS (mod2.x)> 
> c </MODIFICATIONS (mod4.x)> 
214a341,345 
> c <MODIFICATIONS (mod4.x)> 
> cc MODIFICATIONS (mod2.x)> 
> CC      call MPE_LOG_EVENT(2,0,"End SSOR") 
> cc  </MODIFICATIONS   (mod2.x)> 
> c  </MODIFICATIONS   (mod4.x)> 
217a349,370 
> c  MODIFICATIONS   (mod4.x)> 
> cc  MODIFICATIONS   (mod3.x)> 
> ccc  <MODIFICATIONS   (mod2.x)> 

c 
c 
cc 
cc 
cc 
cc 
cc 
ccc 

cal 1 MPE_FINISH_LOG (" LU " ) 

call get_name(p_name,n_len) 
print 2700,id,p_name(l:n_len) 
print 2701,id,nx,ny,nz 
print 2704,id,ipt,ipt+nx-1,jpt,jpt+ny-1,0,nz-l 
print 2702,id,north,south,west,east 
print 2703,id,ist,iend,jst,jend 

cc 2700 format ('Process',i3,' executing on ',A) 
cc 2701 format ('Process',i3,' dimensions:  nx=',i3,' ny=',i3,' 
cc 2702 format ('Process',i3,' neighbors:  north=',i3,' south=' 
cc    >     ' west=',i3,' east=',i3) 
ccc 2703 format ('Process',i3,' position: 
ccc    >     ' jst=',i3,' jend=',i3) 
cc 2704 format ('Process',i3,' position:  ipt=',i3. 

nz= 
, i3. 

,13) 

ist=',i3,' iend=',i3, 

1 ,i3, 
kpt=•,i3, ,i3) cc    >     ' jpt=',i3,' . . ' ,i3, 

ccc </MODIFICATIONS (mod2.x)> 
cc </MODIFICATIONS (mod3.x)> 
c </MODIFICATIONS (mod4.x)> 

diff -r NPB-modla/LU/subdomain.f NPB-mod4.2/LU/subdomain.f 
8a9,30 
> c 
> c 
> c 
> c 

MODIFICATIONS 
23 Dec 98 -- Moved "print" instrumentation from ssor() 

-- Interfaced with weighnode{) 
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> c 
> c 24 Dec 98 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 4 Jan 99 
> c 

Adjusted partitioning scheme, instrumenting as I go 
Fleshed-out the partition refinement code (yesterday, 
I left it as stubs to abort if the sum of the subdomains 
was not equal to the domain itself, or if any partition 
was smaller than four rows/columns thick) 
-- Two ways to refine partition: 

-- Steal from poor, give to rich 
— If there's extra work to be done, give it to the 

strong-muscly-types; if there's too much work, 
give the 90-pound-weaklings a break 

-- Steal from rich, give to poor 
-- Avoid overcompensating 
-- Won't induce partition-too-small problem like 

the first option would 
Removed instrumentation 

> c- 

17a40,54 
> c  MODIFICATIONS   (mod3.x)> 

Function declaration 
double precision weighnode 

Variable declaration 
character*32 p_name 
integer n_len,loop,sum,itemp 
integer iargl,iarg2,iarg3,iarg4 
double precision weight,farg2,temp 
double precision glblw8(0:nnodes_compiled-l),ttlw8 

get it?  glblw8 --> global w8 --> global weight 
boy, I'm too funny! 

> integer isiz0t,nt(0:nnodes_compiled-l),tpt(0:nnodes_compiled-l) 
> logical  sorted 
> integer lo_end,hi_end,pointer(0:nnodes_compiled-l) 
> c  </MODIFICATIONS   (mod3.x)> 
26a64,66 
> c  MODIFICATIONS   (mod3.x)> 
> c Leave the original calculations there for compairson purposes 
> c </MODIFICATIONS (mod3.x)> 
55a96,232 
> c MODIFICATIONS (mod3.x)> 
> c MODIFICATIONS (mod4.x)> 
> c     call get_name(p_name,n_len) 
> c     print 3600,id,p_name(1:n_len) 
> c     print 3601,id,north,south,west,east 

print 3602,id,nx,ny,nz 
print 3 603,id,ipt,ipt+nx-1,jpt,jpt+ny-1,0,nz-l 

> c 
> 
> c 
> 
> 
> 
> 
> 
> c 
> c 

> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> c 
> 
> c  
> c  weigh each node and partition grid appropriately 
> c  
> isizOt = isizOl 

3600 format ('Process',i3, 
3 601 format ('Process',i3, 

> ,i3, ' west=',i3, 
3 602 format ('Process',i3, 

> ' nz=',i3) 
3 603 format ('Process',i3, 

> ' jpt=',i3, ' 
</MODIFICATIONS (mod4.x)> 

' executing on ',A) 
' original neighbors:  north=',i3,' south= 
' east= ' ,i3) 
' original dimensions:  nx=',i3,' ny=',i3, 

' original position:  ipt=',i3,' ..',i3, 
,i3,■ kpt=',i3, ' . . ■ ,i3) 

> c iargl = 0 
> c farg2 =1.0 
> c weight = weighnode(iargl farg2) 
> c iargl = 1 
> c iarg2 = 0 
> c weight = weighnode(iargl iarg2) 
> c iargl = 1 
> c iarg2 = 1 
> c iarg3 = 4 
> c 
> 
> 

weight = weighnode(iargl 
iargl = 2 
iarg2 =22 

iarg2,iarg3) 

Programmer-specified 
Programmer-specified 
Programmer-specified 
/proc/cpuinfo 
/proc/cpuinfo 
/proc/cpuinfo 
/proc/cpuinfo converted 
/proc/cpuinfo converted 
/proc/cpuinfo converted 
/proc/cpuinfo converted 

calc_pi 
calc_pi 
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iarg3 = 0 
weight = weighriode(iargl,iarg2,iarg3) 

c     iargl = 2 
c     iarg2 =22 
c     iarg3 = 1 
c     iarg4 = 4 
c     weight = weighnode(iargl,iarg2,iarg3 , iarg4) 
c MODIFICATIONS (mod4.x)> 
c     print 3604,id,weight,p_name(l:n_len) 
c 3 604 format ('Process', i3 , ' reports weight=',f14.2, 
c    >     ' while executing on ',A) 
c </MODIFICATIONS (mod4.x)> 

calc_pi 
calc_pi 
calc_pi 
calc_pi 
calc_pi 
calc_pi 
calc_pi 

converted 
converted 
converted 
converted 
converted 

call MPI_ALLGATHER(weight,1,MPI_DOOBLE_PRECISION, 
> glblw8,1,MPI_DOUBLE_PRECISION, 
> MPI_COMM_WORLD, IERROR) 

ttlw8 =0.0 
do 3651 loop=0,nnodes_compiled-l 

ttlw8 = ttlw8 + glblw8(loop) 
3 651 continue 

sum = 0 
do 3 652 loop=0,nnodes_compiled-l 

temp = glblw8(loop)*isiz0t 
nt(loop) = temp/ttlw8 
if (mod(temp,ttlw8)/ttlw8.ge.0.5) 

nt(loop) = nt(loop)+l 
endif 
sum = sum+nt(loop) 
pointer(loop) = loop 

3 652 continue 

then 

! common subexpression 
! nt is int, so truncated 

! correct rounding error 

! to check the math later 
! initialize pointers 

c bubblesort may not be the most scalable sort in the world, but it's 
c quick'n'easy to code, and we're not exactly dealing with a large number 
c of processors here -- the overhead of something like quicksort may be even 
c worse for our small number of processors 
c to give credit where it's due, this is from D.M. Etter, /Structured 
c Fortran 77 for Engineers and Scientists/.  Menlo Park CA:  The 
c Benjamin/Cummings Publishing Company, 1987, pl93, with some modifications 
c (variable names (big deal) and the use of pseudopointers) 

sorted = .false. 
3 655 if (.not.sorted) then 

sorted = .true, 
do 3656 loop=0,nnodes_compiled-2 

if (nt(pointer(loop)).gt.nt(pointer(loop+1))) then 
itemp = pointer(loop) 
pointer(loop) = pointer(loop+1) 
pointer(loop+1) = itemp 
sorted = .false, 

endif 
3656   continue 

go to 3655 
endif 
lo_end = 0 
hi_end = nnodes_compiled-l 

steal from the poor 
give to the rich 

if 
3657 

(sum.ne.isizOt) then 
if (sum.gt.isizOt) then 

nuts 
ease the lowend's load 

nt(pointer(lo_end)) = nt(pointer(lo_end))-1 
> lo_end = lo_end+l 
> sum = sum-1 
> go to 3 657 
> endif 
> 3658   if (sum.lt.isizOt) then 
> nt(pointer(hi_end)) 
> hi end = hi end-1 
> sum = sum+1 
> go to 3658 
> endif 
> endif 
> 

! share the easement 

! make sure we're finished 

nt(pointer(hi_end) 
more work for highend 
)+l 
share the extra effort 

! make sure we're done 
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> do 3 659 loop=0,nnodes_compiled-2 
> if (nt(pointer)loop)).It.4) then ! nuts 
> itemp = 4-nt(pointer(loop)) 
> nt(pointer(loop)) = nt(pointer(loop))+itemp 
> nt(pointer(loop+1)) = nt(pointer(loop+1))-itemp 
> endif 
> 3 659 continue 
> if (nt(pointer(nnodes_compiled-l)).It.4) then ! gosh darn it 
> endif ! do nothing ... it'll get caught below 
> 
> tpt(O) = 0 
> do 3 654 loop=l,nnodes_compiled-l 
> tpt(loop) = tpt(loop-l)+nt(loop-l) 
> 3 654  continue 
> 
> c  </MODIFICATIONS   (mod3.x)> 
> c  MODIFICATIONS   (mod3 . 2) > 
> ny = nt(id) 
> jpt  =  tpt(id) 
> 
> c  </MODIFICATIONS   (mod3.2)> 
> c   MODIFICATIONS   (mod4.x)> 
> c  MODIFICATIONS   (mod3.x)> 
> c print  3 613,id,nx,ny,nz 
> c print  3614,id,ipt,ipt+nx-1,jpt,jpt+ny-1,0,nz-l 
> c  3613   format   ('Process',i3,'   new dimensions:     nx=',i3,'   ny=',i3, 
> c > '   nz=',i3) 
> c 3 614 format ('Process',i3, ' new position:  ipt=',i3,' ..',i3, 
> c    >    ' jpt=',i3,' ..',i3,' kpt=',i3,' ..',i3) 
> c 
> c </MODIFICATIONS (mod3.x)> 
> c </MODIFICATIONS (mod4.x)> 
diff -r NPB-modla/Makefile NPB-mod4.2/Makefile 
18al9,20 
> cd metric; make all; make HINT BINDIR=. ./bin 
> cp metric/*.o LU; 
55a58 
> - rm -rf bin/hint 
60a64 
> - rm -f metric/hint/core metric/hint/*.o metric/hint/*- 
diff -r NPB-modla/config/make.def NPB-mod4.2/config/make.def 
40c40 
< FMPIJLIB  = -L/usr/mpich/lib/LINUX/ch_p4 -lmpi 

> FMPI_LIB  = -L/usr/mpich/lib/LINUX/ch_p4 -lmpe -lpmpi -lmpi 
87c87 
< CMPI_LIB  = -L/usr/mpich/lib/LINUX/ch_p4 -lmpi 

> CMPI_LIB  = -L/usr/mpich/lib/LINUX/ch_p4 -lmpe -lpmpi -lmpi 
Only in NPB-mod4.2: metric 
diff -r NPB-modla/sys/setparams.c NPB-mod4.2/sys/setparams.c 
13al4,18 
> * 24 Dec 98 -- Changed write_lu_info() to allocate the entire problem 
> * size for each processor -- I know this is a waste of (virtual) 
> * memory, but without dynamic memory allocation, it's the only 
> * way I can be assured I'11 have enough memory for a non- 
> * fixed partitioning 
455a461,462 
> /* MODIFIED 4 Dec 98 by cb */ 
> /* MODIFIED 24 Dec 98 by cb */ 
479,480c486,491 
< isizl = problem_size/xdiv; if (isizl*xdiv < problem_size) isizl++; 
< isiz2 = problem_size/ydiv; if (isiz2*ydiv < problem_size) isiz2++; 

> /* MODIFICATIONS (mod3.x)> */ 
> /*   isizl = problem_size/xdiv; if (isizl*xdiv < problem_size) isizl++; */ 
> /*   isiz2 = problem_size/ydiv; if (isiz2*ydiv < problem_size) isiz2++; */ 
> isizl = problem_size; 
> isiz2 = problem_size; 
> /* </MODIFICATIONS (mod3.x)> */ 
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B.4. diff  -r NPB-mod4.2 NPB-mod4.3 
diff -r NPB-mod4.2/LU/proc_grid.f NPB-mod4.3/LU/proc_grid.f 
45a46,48 
> c    22 Jan 99 — yes, I am.  I want to run this thing on all processors 
> c on the system, and block striping allows me to do that 
> c 
diff -r NPB-mod4.2/config/suite.def NPB-mod4.3/config/suite.def 
14,29cl4,22 
< lu W 1 
< lu W 2 
< lu W 4 
< lu W 8 
< lu A 1 
< lu A 2 
< lu A 4 
< lu A 8 
< lu B 1 
< lu B 2 
< lu B 4 
< lu B 8 
< lu C 1 
< lu C 2 
< lu C 4 
< lu C 8 

> lu A 10 
> lu A 11 
> lu A 12 
> lu B 10 
> lu B 11 
> lu B 12 
> lu C 10 
> lu C 11 
> lu C 12 
diff -r NPB- -mod4.2/sys/setparams.c NPB-mod4.3/sys/setparams.c 
18al9 
>  * 22 Jan 99 -- Removed power-of-two requirement from LU 
218c219,221 
<  case LU 

> /* MODIFICATIONS (x.3)> */ 
> /*   case LU: */ 
> /*   </MODIFICATIONS   (x.3)>   */ 
226a230,232 
> /*   MODIFICATIONS   (x.3)>   */ 
> case  LU: 
> /* </MODIFICATIONS (x.3)> */ 
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B.5. MPI Wrappers 

B.5.1. lu_wrapper.c 
#include "mpi.h" 

extern void applu_(); 

int main(int arge, char *argv[]) { 
MPI_Init(&argc,&argv); 
applu_(); 
return  0; 

} 

B.5.2. get_name.c 
#include   "mpi.h" 

void get_name_(char  *procname,int  *namelen)   { 
char processor_name[MPI_MAX_PROCESSOR_NAME]; 
MPI_Get_processor_name(procname,namelen); 

} 
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Appendix C: NodeMetric Source Code 

This source code is stored on the ABC in the /home/cbohn/thesis 

directory, and it is also available directly from the author (see Vita for contact 

information). 

C.l. weighnode 

C.l.l. weighnode.h 

* * 
* PROJECT: Asymmetric Load Balancing on a Heterogeneous * 
* Cluster of PCs * 
* AFIT/GE/ENG/99M-02 * 
* * 
* PACKAGE: NodeMetric * 
* 0.2 * 
* * 
* FILE:   weighnode.h * 
* 0.1 * 
* Single interface for a program to assess the relative * 
* processing power (computational & other) of a compute * 
* node * 
* * 
* AUTHOR:  Capt Christopher A. Bohn * 
* * 
* HISTORY: 26 Nov 98 -- Version a.l begun * 
* 27 Nov 98 — a.l complete * 
* — Version a.2 begun * 
* — a.2 complete * 
* -- Version a.3 begun * 
* -- a.3 complete * 
* 28 Nov 98 -- Version a.4 begun * 
* -- a.4 complete * 
* -- Version a.5 begun * 
* 29 Nov 98 — a.5 (C version) complete — FORTRAN versions * 
* abandoned * 
* -- Version a.5.1 begun * 
* — a.5.1 (FORTRAN versions) complete * 
* — weighnode.h Version 0.1 * 
* — NodeMetric Version 0.1 * 
* 11 Dec 98 -- NodeMetric 0.1.1 * 
* 31 Dec 98 — NodeMetric 0.1.2 * 
* 1 Jan 99 -- NodeMetric 0.2 *       ' 
* * 
•A********************************************************************/ 

double weighnode (int*, ...); 
double weighnode_ (int*, ...); 
double weighnode  (int*, . ..); 

/* weighnode  */ 
/••••A*************************************************************** 
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Uses parameters (all pass-by-reference) to determine how a 
compute node should be evaluated.  Interfaces with metric.c & 
metricmap.c to accomplish the actual measurement.  Returns weight, or 
returns 0.0 in case of error. 

Parameters are: 
Parameter 1 -- Metric 

0 -- Programmer-specified 
-- seemingly pointless option, but I can imagine a couple 

instances in which the application programmer might 
want this option 

Parameter 2 — weight to return to the application (double) 
Parameters 3 & 4 — ignored (optional) 

1 — Parse /proc/cpuinfo 
-- only works on Linux systems 
-- current implementation only parses in bogomips 
-- current implementation assumes uniprocessor 
Parameter 2 -- Return original weight or attempt to unskew? 

0 -- original weight 
1 -- convert weight 

Parameter 3 — ignored (optional) if original weight is 
desired 

-- if weight is to be converted, then 
0 — convert for 16-bit integer operations 
1 -- convert for 32-bit integer operations 
2 -- convert for 64-bit integer operations 
3 -- convert for 32-bit floating point operations 
4 -- convert for 64-bit floating point operations 

Parameter 4 -- ignored (optional) 
2 -- Determine Mflops performance by calculating Pi 

Parameter 2 -- indicate level of precision 
-- current valid values are 16-28 

-- less than 16 and time frame is too small 
to measure 

-- more than 28 and the operations count 
overflows 

-- personally, I recommend 22, maybe 23 to get 
the steady-state Mflops reading in minimal 
time 

Parameter 3 — Return original weight or attempt to unskew? 
0 -- original weight 
1 -- convert weight 

Parameter 4 — ignored (optional) if original weight is 
desired 

-- if weight is to be converted, then 
0 -- convert for 16-bit integer operations 
1 -- convert for 32-bit integer operations 
2 -- convert for 64-bit integer operations 
3 -- convert for 32-bit floating point operations 
4 -- convert for 64-bit floating point operations 

3 -- Determine QUIPS performance by using HINT benchmark 
Parameter 2 -- Specify nature of operations 

0 -- convert for 16-bit integer operations 
1 -- convert for 32-bit integer operations 
2 -- convert for 64-bit integer operations 
3 -- convert for 32-bit floating point operations 
4 -- convert for 64-bit floating point operations 

Parameters 3 & 4 — ignored (optional) 
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C.1.2. weighnode.c 
#include <stdarg.h> 
#include "metric.h" 
#include "metricmap.h" 

/a********************************************************************* 

* * 
* PROJECT: Asymmetric Load Balancing on a Heterogeneous * 
* Cluster of PCs * 
* AFIT/ENG/GE99M-02 * 
* * 

* PACKAGE: NodeMetric * 
* 0.2 * 
* * 

* FILE:    weighnode.c * 
* 0.1 * 
* Single interface for a program to assess the relative * 
* processing power (computational & other) of a compute * 
* node * 
* * 

* AUTHOR:  Capt Christopher A. Bohn * 
* * 
* HISTORY: 26 Nov 98 -- Version a.l begun * 
* -- Objective: Develop interface for * 
* weighnode, capable of being called from * 
* FORTRAN transparently, as well * 
* 27 Nov 98 -- a.l complete * 
* -- Version a.2 begun * 
* -- Objective: Correctly interpret variable * 
* arguments (here's hoping that the man * 
* page and about 1 printed page's worth of * 
* a textbook (Kelley & Pohl, A Book on C, * 
* Benjamin Cummings, 1990, pp462-463) is * 
* sufficient) * 
* -- a.2 complete * 
* -- Version a.3 begun * 
* — Objective: Implement the FORTRAN versions * 
* (well, they're written in C, but they * 
* have trailing underscores) that simply * 
* call the C version * 
* — a.3 complete * 
* 28 Nov 98 -- Version a.4 begun * 
* -- Objective: Add capability for the * 
* application programmer to specify the * 
* weight that weighnode() will return -- * 
* I know this seems unnecessary, but a) I * 
* have noticed that programmers tend to * 
* find uses for features the original * 
* programmer never though of;  b) I can   , * 
* think of a couple uses for such an * 
* option (suppose the app prog'r wants to * 
* use a b/m I'm not providing, or wants to * 
* specify identical weights for all nodes, * 
* and (s)he doesn't want to muck with the * 
* code ... now the app prog'r only has to * 
* change the weighnode() line ... no other * 
* lines need be affected, and none of this * 
* ugly commented-out line business; and * 
* c) it's cheap ... these comments take up * 
* more space in the source code than the * 
* actual code will! * 
* -- a.4 complete * 
* -- Version a.5 begun * 
* -- Objective: Let's code this puppy! * 
* 29 Nov 98 — a.5 (C version) complete -- FORTRAN versions * 
* abandoned, as I realized one of my * 
* assumptions was not-so-good * 
* -- I had assumed the it would be trivial for * 
* weighnode_() & weighnode () to call * 
* weighnode(), and then I could keep code * 
* maintenance simpler by only modifying * 
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* weighnode() * 
* — Turns out the FORTRAN versions would * 
* have to do a heckuva lot of decoding to  * 
* correctly call the C version (due to * 
* variable arguments), and this decoding   * 
* would also have to be maintained * 
* -- Version a.5.1 begun * 
* -- Objective: Copy the code from the C * 
* version into the FORTRAN version * 
* -- a.5.1 complete * 
* — weighnode.c Version 0.1 * 
* -- NodeMetric Version 0.1 * 
* 11 Dec 98 -- NodeMetric 0.1.1 * 
* 31 Dec 98 -- NodeMetric 0.1.2 * 
* 1 Jan 99 -- NodeMetric 0.2 * 
* * 

double weighnode (int *yardstick, ...) { 

Uses parameters (all pass-by-reference) to determine how a 
compute node should be evaluated.  Interfaces with metric.c & 
metricmap.c to accomplish the actual measurement.  Returns weight, or 
returns 0.0 in case of error. 

Parameters are: 
Parameter 1 -- Metric 

0 -- Programmer-specified 
-- seemingly pointless option, but I can imagine a couple 

instances in which the application programmer might 
want this option 

Parameter 2 — weight to return to the application (double) 
Parameters 3 & 4 -- ignored (optional) 

1 -- Parse /proc/cpuinfo 
'    -- only works on Linux systems 

-- current implementation only parses in bogomips 
-- current implementation assumes uniprocessor 
Parameter 2 -- Return original weight or attempt to unskew? 

0 -- original weight 
1 -- convert weight 

Parameter 3 — ignored (optional) if original weight is 
desired 

-- if weight is to be converted, then 
0 -- convert for 16-bit integer operations 
1 -- convert for 32-bit integer operations 
2 -- convert for 64-bit integer operations 
3 -- convert for 32-bit floating point operations 
4 -- convert for 64-bit floating point operations 

Parameter 4 — ignored (optional) 
2 -- Determine Mflops performance by calculating Pi 

Parameter 2 -- indicate level of precision 
-- current valid values are 16-28 

-- less than 16 and time frame is too small 
to measure 

-- more than 28 and the operations count 
overflows 

-- personally, I recommend 22, maybe 23 to get 
the steady-state Mflops reading in minimal 
time 

Parameter 3 -- Return original weight or attempt to unskew? 
0 -- original weight 
1 -- convert weight 

Parameter 4 -- ignored (optional) if original weight is 
desired 

-- if weight is to be converted, then 
0 -- convert for 16-bit integer operations 
1 -- convert for 32-bit integer operations 
2 -- convert for 64-bit integer operations 
3 -- convert for 32-bit floating point operations 
4 -- convert for 64-bit floating point operations 

3 — Determine QUIPS performance by using HINT benchmark 
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Parameter 2 -- Specify nature of operations 
0 -- convert for 16-bit integer operations 
1 -- convert for 32-bit integer operations 
2 -- convert for 64-bit integer operations 
3 -- convert for 32-bit floating point operations 
4 — convert for 64-bit floating point operations 

Parameters 3 &  4 -- ignored (optional) 
26 Nov 98 -- Developed interface 
27 Nov 98 -- Finished interface 

— "Mastered" variable arguments 
— Implemented FORTRAN versions 

28 Nov 98 -- Added option to return programmer-specified weight 
-- Started implementation 

29 Nov 98 — C version coded 
— FORTRAN versions coded 

double weight,*weightp, pi; 
int argl,arg2,arg3,arg4; 
int *arg2p,*arg3p,*arg4p; 

va_list ap; 
va_start(ap,yardstick); /* Initialize variable arguments */ 

argl=*yardstick; 
switch(argl) { 

case 0: /* Let programmer specify weight */ 
weightp=va_arg(ap,double*); /* Return the second argument */ 
weight=*weightp; 
break; 

case 1: /* Parse /proc/cpuinfo */ 
arg2p=va_arg(ap,int*); 
arg2=*arg2p; 
if (arg2==0) weight=parse_cpuinfo();    /* Return bogomips, straight-up  */ 
else { 

arg3p=va_arg(ap,int*) ; 
arg3=*arg3p; 
switch(arg3) { 
case 0: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"SHORT"); 
break; /* Convert to HINT SHORT */ 

case 1: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"INT"); 
break; /* Convert to HINT INT  */ 

case 2: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"LONGLONG"); 
break; /* Convert to HINT LONGLONG  */ 

case 3: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"FLOAT"); 
break; /* Convert to HINT FLOAT  */ 

case 4: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"DOUBLE"); 
break; /* Convert to HINT DOUBLE  */ 

case 5: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"NAS"); 
break; /* Convert to NAS NPB-W-serial  */ 

default: 
weight=0.0; 

} /* switch (arg3) */ 
} /* else (arg2!=0) */ 
break; 

case 2: /* Calculate Pi & count flops */ 
arg2p=va_arg(ap,int*); /* Level of precision */ 
arg2=*arg2p; 
arg3p=va_arg(ap,int*); 
arg3=*arg3p; 
if (arg3==0) weight=calc_pi(pow(2,arg2),&pi); 

/* Return Mflops, straight-up */ 
else { 

arg4p=va_arg(ap,int*); 
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arg4=*arg4p; 
switch(arg4) { 
case 0: 
weight=convert_calc_pi(calc_pi 
break; 

case 1: 
weight=convert_calc_pi(calc_pi 
break; 

case 2: 
weight=convert_calc_pi(calc_pi 
break; 

case 3: 
weight=convert_calc_pi(calc_pi 
break; 

case 4: 
weight=convert_calc_pi(calc_pi 
break; 

case 5: 
weight=convert_calc_pi(calc_pi 
break; 

default: 
weight=0.0; 

} /* switch (arg4) */ 
} /* else (arg3!=0) */ 
break; 

case 3: 
arg2p=va_arg(ap,int*); 
arg2=*arg2p; 
switch(arg2) { 
case 0: 
weight=run_hint("SHORT"); 
break; 

case 1: 
weight=run_hint("INT"); 
break; 

case 2: 
weight=run_hint("LONGLONG"); 
break; 

case 3: 
weight=run_hint("FLOAT"); 
break; 

case 4: 
weight=run_hint("DOUBLE"); 
break; 

default: 
weight=0.0; 

} /* switch (arg2) */ 
break; 

(pow(2,arg2),&pi),"SHORT"); 
/* Convert to HINT SHORT  */ 

(pow(2,arg2),&pi),"INT"); 
/* Convert to HINT INT */ 

(pow(2,arg2),&pi),"LONGLONG"); 
/* Convert to HINT LONGLONG  */ 

(pow(2,arg2),&pi),"FLOAT"); 
/* Convert to HINT FLOAT  */ 

(pow(2,arg2),&pi),"DOUBLE"); 
/* Convert to HINT DOUBLE  */ 

(pow(2,arg2),&pi),"NAS"); 
/* Convert to NAS NPB-W-serial  */ 

/* Use HINT b/m to weigh nodes */ 

/* Convert to HINT SHORT  */ 

/* Convert to HINT INT */ 

/* Convert to HINT LONGLONG  */ 

/* Convert to HINT FLOAT  */ 

/* Convert to HINT DOUBLE  */ 

case 4: 
weight=0.0; 
break; 

default: 
weight=0.0; 

} /* switch (argl) */ 

/* Use NAS NPB-W-serial */ 
/* Not yet available */ 

va_end(ap); 
return weight; 

} /* weighnode */ 

/* Wrap things up */ 

double weighnode_(int *yardstick, ...) { 

See header for weighnode() for description & history 

double weight,*weightp,pi; 
int argl,arg2,arg3,arg4; 
int *arg2p,*arg3p,*arg4p; 
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va_list ap; 
va_start(ap,yardstick); /* Initialize variable arguments */ 

argl=*yardstick; 
switch(argl) { 

case 0: /* Let programmer specify weight */ 
weightp=va_arg(ap,double*); /* Return the second argument */ 
weight=*weightp; 
break; 

case 1: /* Parse /proc/cpuinfo */ 
arg2p=va_arg(ap,int*); 
arg2=*arg2p; 
if (arg2==0) weight=parse_cpuinfo();    /* Return bogomips, straight-up */ 
else { 
arg3p=va_arg(ap,int*); 
arg3=*arg3p; 
switch(arg3) { 
case 0: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"SHORT"); 
break; /* Convert to HINT SHORT */ 

case 1: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"INT"); 
break; /* Convert to HINT INT */ 

case 2: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"LONGLONG"); 
break; /* Convert to HINT LONGLONG */ 

case 3: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"FLOAT"); 
break; /* Convert to HINT FLOAT  */ 

case 4: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"DOUBLE"); 
break; /* Convert to HINT DOUBLE  */ 

case 5: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"NAS"); 
break; /* Convert to NAS NPB-W-serial  */ 

default: 
weight=0.0; 

} /* switch (arg3) */ 
} /* else (arg2!=0) */ 
break; 

case 2: /* Calculate Pi & count flops */ 
arg2p=va_arg(ap,int*); /* Level of precision */ 
arg2=*arg2p; 
arg3p=va_arg(ap,int*); 
arg3=*arg3p; 
if (arg3==0) weight=calc_pi(pow(2,arg2),&pi); 

/* Return Mflops, straight-up  */ 
else { 
arg4p=va_arg(ap,int*); 
arg4=*arg4p; 
switch(arg4) { 
case 0: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"SHORT"); 
break; /* Convert to HINT SHORT  */ 

case 1: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"INT"); 
break; /* Convert to HINT INT  */ 

case 2: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"LONGLONG"); 
break; /* Convert to HINT LONGLONG  */ 

case 3: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"FLOAT"); 
break; /* Convert to HINT FLOAT  */ 

case 4: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"DOUBLE"); 
break; /* Convert to HINT DOUBLE  */ 

case 5: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"NAS"); 
break; /* Convert to NAS NPB-W-serial  */ 
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default: 
weight=0.0; 

} /* switch (arg4) */ 
} /* else (arg3!=0) */ 
break; 

case 3: 
arg2p=va_arg(ap,int*) ; 
arg2=*arg2p; 
switch(arg2) { 
case 0: 
weight=run_hint("SHORT"); 
break; 

case 1: 
weight=run_hint("INT"); 
break; 

case 2: 
weight=run_hint("LONGLONG"); 
break; 

case 3: 
weight=run_hint("FLOAT"); 
break; 

case 4: 
weight=run_hint("DOUBLE"); 
break; 

default: 
weight=0.0; 

} /* switch (arg2) */ 
break; 

/* Use HINT b/m to weigh nodes */ 

/* Convert to HINT SHORT */ 

/* Convert to HINT INT  */ 

/* Convert to HINT LONGLONG  */ 

/* Convert to HINT FLOAT  */ 

/* Convert to HINT DOUBLE  */ 

case 4: 
weight=0.0; 
break; 

/* Use NAS NPB-W-serial */ 
/* Not yet available */ 

default: 
weight=0.0; 

} /* switch (argl) */ 

va_end(ap); 
return weight; 

} /* weighnode_ */ 

/* Wrap things up */ 

double weighnode (int *yardstick, ...) { 

See header for weighnode() for description & history 
••••••A*************************************************************/ 

double weight,*weightp,pi; 
int argl,arg2,arg3,arg4; 
int *arg2p,*arg3p,*arg4p; 

va_list ap; 
va_start(ap,yardstick); 

argl=*yardstick; 
switch(argl) { 

case 0: 
weightp=va_arg(ap,double*) ; 
weight=*weightp; 
break; 

/* Initialize variable arguments */ 

/* Let programmer specify weight */ 
/* Return the second argument */ 

case 1: 
arg2p=va_arg(ap,int*); 
arg2=*arg2p; 
if (arg2==0) weight=parse_cpuinfo(); 
else { 

arg3p=va_arg(ap,int*); 
arg3=*arg3p; 
switch(arg3) { 
case 0: 

/* Parse /proc/cpuinfo */ 

/* Return bogomips, straight-up  */ 
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weight=convert_parse_cpuinfo(parse_cpuinfo(),"SHORT"); 
break; /* Convert to HINT SHORT  */ 

case 1: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"INT"); 
break; /* Convert to HINT INT */ 

case 2: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"LONGLONG"); 
break; /* Convert to HINT LONGLONG */ 

case 3: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"FLOAT"); 
break; /* Convert to HINT FLOAT  */ 

case 4: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"DOUBLE"); 
break; /* Convert to HINT DOUBLE */ 

case 5: 
weight=convert_parse_cpuinfo(parse_cpuinfo(),"NAS"); 
break; /* Convert to NAS NPB-W-serial  */ 

default: 
weight=0.0; 

} /* switch (arg3) */ 
} /* else (arg2!=0) */ 
break; 

case 2: /* Calculate Pi & count flops */ 
arg2p=va_arg(ap,int*); /* Level of precision */ 
arg2=*arg2p; 
arg3p=va_arg(ap,int*) ; 
arg3=*arg3p; 
if (arg3==0) weight=calc_pi(pow(2,arg2),&pi); 

/* Return Mflops, straight-up  */ 
else { 
arg4p=va_arg(ap,int*); 
arg4=*arg4p; 
switch(arg4) { 
case 0: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"SHORT"); 
break; /* Convert to HINT SHORT  */ 

case 1: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"INT"); 
break; /* Convert to HINT INT  */ 

case 2: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"LONGLONG"); 
break; /* Convert to HINT LONGLONG  */ 

case 3: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"FLOAT"); 
break; /* Convert to HINT FLOAT  */ 

case 4: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"DOUBLE"); 
break; /* Convert to HINT DOUBLE  */ 

case 5: 
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"NAS"); 
break; /* Convert to NAS NPB-W-serial  */ 

default: 
weight=0.0; 

} /* switch (arg4) */ 
} /* else (arg3!=0) */ 
break; 

case 3: /* Use HINT b/m to weigh nodes */ 
arg2p=va_arg(ap,int*); 
arg2=*arg2p; 
switch(arg2) { 
case 0: 
weight=run_hint("SHORT"); 
break; /* Convert to HINT SHORT  */ 

case 1: 
weight=run_hint("INT"); 
break; /* Convert to HINT INT  */ 

case 2: 
weight=run_hint("LONGLONG"); 
break; /* Convert to HINT LONGLONG  */ 

case 3: 
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weight=run_hint("FLOAT") 
break; 

case 4: 
weight=run_hint("DOUBLE" 
break; 

default: 
weight=0.0; 

} /* switch (arg2) */ 
break; 

/* Convert to HINT FLOAT  */ 

/* Convert to HINT DOUBLE  */ 

case 4: 
weight=0.0; 
break; 

/* Use NAS NPB-W-serial */ 
/* Not yet available */ 

default: 
weight=0.0; 

} /* switch (argl) */ 

va_end(ap); 
return weight; 

} /* weighnode  */ 

/* Wrap things up */ 
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C.2. metric 

C.2.1. metric.h 
#include <math.h> 
#include <stddef.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 

/ ********************************************************************** 
* * 
* PROJECT: Asymmetric Load Balancing on a Heterogeneous * 
* Cluster of PCs * 
* AFIT/GE/ENG/99M-02 * 

PACKAGE : NodeMetric 
0.2 

* FILE: 

AUTHOR: 

HISTORY: 

metric.h 
0.1 
Measures the performance of a node and returns an 
appropriate weight 

Capt Christopher A. Bohn 

16 Nov 98 -- 
18 Nov 98 -- 
19 Nov 98 -- 

20 Nov 98 -- 

23 Nov 98 
24 Nov 98 

25 Nov 98 
29 Nov 98 
11 Dec 98 
31 Dec 98 
1 Jan 99 

Version a.l begun 
a.l complete 
Version a.2 begun 
a.2 complete 
Version a.3 begun 
a.3 abandoned; version a.3.1 begun 
a.3.1 complete 
Version a.3.2 begun - 
a.3.2 complete 
Version a.3.3 begun 
a.3.3 complete 
metric.h Version 0.1 
NodeMetric Version 0. 
NodeMetric 0.1.1 
NodeMetric 0.1.2 
NodeMetric 0.2 

Objective: see above 

**********************************************************************/ 

double parse_cpuinfo (); 
double calc_pi (long,double*) 
double run_hint (chart]); 

/* parse_cpuinfo */ 
/******************************************************************** 
Parses /proc/cpuinfo.  Returns bogomips if /proc/cpuinfo exists, 
0.0 otherwise.  For now, we're only looking at bogomips; neglect cpu, 
model, vendor_id ... also assume uniprocessor. 

MIPS, of course, is "Million Instructions Per Second" (or, if you 
prefer, "Meaningless Indicator of Performance Standard"), and BOGO 
is a prefix to indicate bogusness — it's only a calculated guess. 

One big advantage to this benchmark is it's cheap.  No calculations 
to be performed!  Just parse in a file that doesn't even exist on disk. 
If it does exist, then it resides in core memory! 

********************************************************************/ 

/* calc_pi */ 
/******************************************************************** 

Calculates Pi by estimating the area under a curve.  Returns the 
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number of Millions of FLoating Point Operations per Second for the 
kernel.  Accepts as a parameter the number of intervals in which to 
divide the curve for the integration.  Passes back a reference to the 
calculated value of Pi; this is necessary, or a good optimizing compiler 
will avoid calculating Pi at all, since it would never be used.  This 
version only works for n < (2**31-1)/6.  That's just as well, since this 
is intended to be a "quick'n'dirty" benchmark. 

************•*******************************************************/ 

/* run_hint */ 

Runs the HINT benchmark to evaluate the system's performance. 
Specify the datatype to be evaluated as the parameter. 
Returns the QUIPS value provided by HINT. 
Assumes the compiled HINT executables are stored in a directory 

called "hint" immediately below the current directory. 
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C.2.2. metric, c 
#include <math.h> 
#include <stddef.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 

/ ********************************************************************** 

PROJECT: Asymmetric Load Balancing on a Heterogeneous 
Cluster of PCs 
AFIT/GE/ENG/99M-02 

* PACKAGE: NodeMetric 
0.2 

* FILE:    metric.c 
* 0.1 
* Measures the performance of a node and returns 
* appropriate weight 
* 
* AUTHOR:  Capt Christopher A. Bohn 

HISTORY: 16 Nov 98 

18 Nov 98 

19 Nov 98 

20 Nov 98 

23 Nov 9£ 
24 Nov 96 

25 Nov 9 

29 Nov 9 
11 Dec 9 
31 Dec 9 

Version a.l begun * 
-- Objective: parse /proc/cpuinfo * 
Successfully parsed /proc/cpuinfo * 
— Does not check for EOF—implement later * 
a.l complete * 
Version a.2 begun * 
— Objective: time the calculation of pi * 
Successfully calculted Pi, and experimented * 
with a couple different datatype sizes. * 
— Conclusion: The intrinsic datatypes large * 

enough to deal with numbers > 2**31 don't * 
matter here, because the execution takes * 
so long as to defeat the point of the pi * 
metric -- something that takes a half-hour* 
to finish might as well lead us to use a * 
"real" benchmark like HINT — the pi b/m * 
is intended to be something fast that is * 
not as naive as the cpuinfo b/m * 

a.2 complete * 
Version a.3 begun * 
-- Objective: fork another process that will * 

transmorgriphy into the serial HINT b/m * 
a.3 abandoned; version a.3.1 begun * 
-- Objective: take core of a.3's run_hint, * 

and instead of forking and trying to * 
assess the status of the child process, * 
blahblahblah, we'll have the parent * 
process use a system call to run the b/m, * 
and the parent will stay blocked until * 
the b/m is complete. * 

Successfully launched HINT -- now just need * 
to add some flexibility that will allow * 
multiple processors to run it without * 
overwriting each other's "stuff" * 
a.3.1 complete * 
Version a.3.2 begun -- Objective: see above * 
a.3.2 complete * 
Version a.3.3 begun * 
-- Objective: change parse_cpuinfo to return * 

bogomips instead of passing it as a * 
parameter * 

a.3.3 complete * 
Testing constructs removed * 
metric.c Version 0.1 * 
NodeMetric Version 0.1 * 
NodeMetric 0.1.1 * 
NodeMetric 0.1.2 * 

152 



* 1 Jan 99 -- NodeMetric 0.2 * 
* * 
**********************************************************************/ 

double parse_cpuinfo () { 
/ ******************************************************************** 
Parses /proc/cpuinfo.  Returns bogomips if /proc/cpuinfo exists, 
0.0 otherwise.  For now, we're only looking at bogomips; neglect cpu, 
model, vendor_id ... also assume uniprocessor. 

MIPS, of course, is "Million Instructions Per Second" (or, if you 
prefer, "Meaningless Indicator of Performance Standard"), and BOGO 
is a prefix to indicate bogusness — it's only a calculated guess. 
This benchmark is remarkably naive.  There is no way we could hope 

to realize the level of performance bogomips indicates.  And the memory 
hierarchy tends to level the field -- a node with a 600MHz processor 
isn't twice as fast as a node with a 300MHz processor.  But a table 
lookup might be able to account for this.  Caution, though:  interpolating 
between & extrapolating from known values in the table could be dangerous, 
as that might not account for changes in memory speed &/or bandwidth. 
Another issue to ponder is that there are processors for which the 
bogomips does not correspond to the clock speed.  Natch, in an unpipelined 
nonsupercalar processor, this is to be expected ... but what about the 
i80486? A problem for another day. 

One big advantage to this benchmark is it's cheap.  No calculations 
to be performed!  Just parse in a file that doesn't even exist on disk. 
If it does exist, then it resides in core memory! 
16 Nov 98 -- dabbled 
18 Nov 98 -- successful parse of /proc/cpuinfo, passing back bogomips 

-- successful return of error code if file does not exist, 
i.e., this is not a Linux system 

24 Nov 98 — Instead of returning -1 for error and 0 for success, and 
passing bogomips as a parameter, it now takes no parameters 
and returns bogomips if successful and 0.0 if not 

********************************************************************/ 
FILE  *cpuinfo; 
char line[31] = ""; /* More than sufficient */ 
double bogomips; 

cpuinfo = fopen("/proc/cpuinfo" 

if (cpuinfo == NULL) 
return(0.0); 

/* File does not exist */ 

else { 
while ( strcmpdine, "bogomips") ) { 

fscanf(cpuinfo,"%s",line); 
} /* while ( strcmp ) */ 

/* Until we find the target */ 
/* I suppose I oughtta check */ 
/* for EOF ... later */ 

fscanf(cpuinfo,"%s",line); 
fscanf(cpuinfo,"%s",line); 
bogomips = atof(line); 
fclose(cpuinfo); 
return(bogomips); 

} /* else (cpuinfo != NULL) */ 
} /* parse_cpuinfo */ 

/* Should be a colon */ 
/* The magic number we want */ 

double calc_pi (long n, double *globalpi) { 
/******************************************************************** 
Calculates Pi by estimating the area under a curve.  Returns the 
number of Millions of FLoating Point Operations per Second for the 
kernel.  Accepts as a parameter the number of intervals in which to 
divide the curve for the integration.  Passes back a reference to the 
calculated value of Pi; this is necessary, or a good optimizing compiler 
will avoid calculating Pi at all, since it would never be used.  This 
version only works for n < (2**31-1)/6.  That's just as well, since this 
is intended to be a "quick'n'dirty" benchmark. 
Like the cpuinfo benchmark, the pi benchmark is naive, only not so 

much.  It actually does /some/ work, but not enough to break out of 
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the LI cache, or even the register file.  This, too, should require 
a table look-up to map the produced results into a useful weight. 

It is interesting to note that peak Mflops is at or about n=2**17 or 18 
on the Pentium II boxen I'm developing & testing this on (not including 
the "infinity" values for really small values of n), but it holds a 
more-or-less stable value for larger values of n.  As a point of 
reference, once out of the "infinity" stage (at n=2**14), the Mflops 
rating grows up to the peak.  Presumably, the beast cannot be sufficiently 
fed for n less than 2**17.  I might want to ponder why it peaks and then 
stablizes. 
19 Nov 98 — borrowed from cpi.c found in the MPICH 1.1 distro, 

removed parallelism from it, minimized it, added 
Mflops calculation 

********************************************************************/ 
double pi = *globalpi; 
clock_t starttime, endtime; 
long i, flopcount; 
double h, x, sum, mflops, totaltime; 

starttime = clock)); 

h = 1.0 / (double)n; 
sum = 0.0; 
for (i=0; i<n; i++) { 
x = h * ((double)i - 0.5) ; 
sum += (4.0 / (1.0 + x*x))j 

} 
pi = h * sum; 

/* 1 flop */ 
/* 0 flop */ 
/* these are all integer ops */ 
/* 2 flop */ 
/* 4 flop */ 

/* 1 flop */ 

endtime = clock(); 

totaltime = (double)(endtime-starttime) / (double)CLOCKS_PER_SEC; 
flopcount = 6*n+2; 
mflops = ( (double)flopcount / 1000000.0 ) / totaltime; 

*globalpi = pi; 
return(mflops); 

} /* calc_pi */ 

double run_hint (char datatype!]) { 
/************************************************** ***************** 
Runs the HINT benchmark to evaluate the system's performance. 
Specify the datatype to be evaluated as the parameter. 

Returns the QUIPS value provided by HINT. 
Assumes the compiled HINT executables are stored in a directory 

called "hint" immediately below the current directory. 
20 Nov 98 -- Much experimenting with fork() & execvO, abandoned 

-- Used system)) to launch HINT, with run_hint() waiting 
for HINT to complete before progressing 

23 Nov 98 -- Accomplished much (but not all) generalization (all 
except the parsing section and testing) 

24 Nov 98 — Discovered (duh!) that system() does not return the 
output of the call (e.g., "pwd"), and that 

system!"cd ...") does not effect a permanent change 
of working directory (nuts!) 
— Going to have to let the multiple copies of HINT 

overwrite each other's output into the ./data 
directory ... 'sokay, since I'm interested in what 
HINT places on stdout ... just hope they don't 
crash — eliminates need for localpath parameter 

********************************************************************, 
char command[61] 
FILE *hintout; 
char line[401] = 
double quips; 

"mkdir 

/* Enough for five lines of dots */ 

switch (datatype[0]) { /* Fix the datatype variable to */ 
/* match the executable name */ 
/* (don't trust the end user) */ 

/* Assume "SHORT" */ 
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case 'S': 
datatype="SHORT"; 
break; 

case 'i': 
case ' I' : 

datatype="INT"; 
break; 

case ' f' : 
case 'F': 

datatype=" FLOAT" ,- 
break; 

case '1' : 
case 'L': 

datatype="LONGLONG"; 
break; 

default: 
case 'd': 
case 'D': 

datatype="DOUBLE"; 
} /* switch (datatype[0]) */ 

/* Assume "INT" */ 

/* Assume "FLOAT" */ 

/* Assume "LONG LONG" or */ 
/* "LONGLONG" but not "LONG" */ 

/* Assume "DOUBLE" */ 

strcpy(command,"mkdir data") 
system(command); 
strcat(command,"/hint"); 
system(command); 

/* Create appropriate directories */ 
/* if they don't exist */ 

/* This wouldn't have been needed */ 
/* if I was able to change */ 
/* the working directory! */ 

/* We'll accept that this will */ 
/* return errors for most (or */ 
/* all) of the processes */ 

strcpy(command,"hint/"); 
strcat(command,datatype); 
hintout = popen(command,"r"); 

while ( strcmp(line,"Finished") ) 
fscanf(hintout,"%s",line) ; 

/* Launch HINT ... */ 

/* ... and take its stdout */ 

/* Until we find the target */ 

fscanf(hintout,"%s",line); 
fscanf(hintout,"%s",line) ; 
quips = atof(line); 

/* Should be "with" */ 
/* The magic number we want */ 

pclose(hintout); 
return quips; 

} /* run_hint */ 
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C.3. metricmap 

C.3.1. metricmap.h 
i ********************************************************************** 

* * 
* PROJECT: Asymmetric Load Balancing on a Heterogeneous * 
* Cluster of PCs * 
* AFIT/GE/ENG/99M-02 * 
* * 
* PACKAGE: NodeMetric * 
* 0.2 * 
* * 
* FILE:   metricmap.h * 
* 0.1 * 
* Converts skewed performance weights into better weights  * 
* * 

* AUTHOR:  Capt Christopher A. Bohn * 
* * 
* HISTORY: 25 Nov 98 — Version a.l begun * 
* --a.l complete * 
* -- Version a.2 begun * 
* — a.2 complete * 
* — Version a.3 begun * 
* — a.3 complete * 
* 27 Nov 98 — Version a.4 begun * 
* -- a.4 complete * 
* 29 Nov 98 -- Version a.5 begun * 
* -- a.5 complete * 
* -- metricmap.h Version 0.1 * 
* -- NodeMetric Version 0.1 * 
* 11 Dec 98 — Nodemetric 0.1.1 * 
* 31 Dec 98 -- NodeMetric 0.1.2 * 
* 1 Jan 99 — NodeMetric 0.2 * 
* * 
**********************************************************************/ 

double convert_parse_cpuinfo (double,char[]); 
double convert_calc_pi (double,char[]); 

/* convert_parse_cpuinfo */ 
/******************************************************************** 
Converts the bogomips returned from parse_cpuinfo into a different 
weight.  First argument is the value returned by parse_cpuinfo. 
Second argument establishes how the value should be changed. 

S -- based on HINT SHORT metric 
I -- based on HINT INT metric 
L -- based on HINT LONGLONG metric 
F -- based on HINT FLOAT metric 
D -- based on HINT DOUBLE metric 

-- "none of the above" returns bogomips unchanged 
********************************************************************/ 

/* convert_calc_pi */ 
/******************************************************************** 
Converts the mflops returned from calc_pi into a different 
weight.  First argument is the value returned by calc_pi. 
Second argument establishes how the value should be changed. 

S — based on HINT SHORT metric 
I — based on HINT INT metric 
L -- based on HINT LONGLONG metric 
F — based on HINT FLOAT metric 
D -- based on HINT DOUBLE metric 

-- "none of the above" returns mflops unchanged 
********************************************************************/ 
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C.3.2. metricmap. c 
#include <math.h> 
#include <stdio.h> 
#include "nodeinfo.h" 

* * 
* PROJECT: Asymmetric Load Balancing on a Heterogeneous * 
* Cluster of PCs * 
* AFIT/GE/ENG/99M-02 * 
* * 
* PACKAGE: NodeMetric * 
* 0.2 * 
* * 

* FILE:    metricmap.c * 
* 0.2 * 
* Converts skewed performance weights into better weights * 
* * 

* AUTHOR:  Capt Christopher A. Bohn * 
* * 
* HISTORY: 25 Nov 98 -- Version a.l begun * 
* -- Objective: Develop interface to convert * 
* bogomips & pi-determined Mflops into * 
* useful weights — interface will be * 
* independent of implementation -- * 
* if implementation is changed, no need to * 
* do full recompilation, just recompile * 
* implementation & relink (just be sure to * 
* type "make" /before/ you update the * 
* version history in metricmap.h, or the * 
* dependency on metricmap.h will force * 
* the calling program to recompile * 
* --a.l complete * 
* -- Version a.2 begun * 
* -- Objective: q&d implementation of * 
* convert_cpuinfo — IF-THEN-ELSE * 
* constructs should be sufficient at this * 
* point -- as the map space grows, an * 
* actual data structure would probably be a * 
* good idea, from a maintenance and * 
* cleanliness POV — structure only at this * 
* point, since I have no values to plug in * 
* yet * 
* -- a.2 complete * 
* — Version a.3 begun * 
* -- Objective: same as a.2, except for * 
* convert_calc_pi * 
* -- a.3 complete * 
* 27 Nov 98 — Version a.4 begun * 
* -- Objective: provide specific values for * 
* 333MHz & 400MHz Pentium II 's * 
* -- a.4 complete * 
* 29 Nov 98 — Version a.5 begun * 
* -- Objective: if passed 0.0 (the designated * 
* error weight), return 0.0 * 
* -- a.5 complete * 
* -- metricmap.c Version 0.1 * 
* -- NodeMetric Version 0.1 * 
* 11 Dec 98 — Nodemetric 0.1.1 * 
* 31 Dec 98 -- NodeMetric 0.1.2 * 
* -- Version 0.2 begun * 
* -- Objective: remove hard-coded mapping and * 
* use the maps generated by buildmap * 
* -- metricmap.c 0.2 * 
*. -- After buildmap is finished executing, * 
* I'll test metricmap 0.2, and if all goes * 
* well, /then/ I'll declare NodeMetric 0.2 * 
* 1 Jan 99 — NodeMetric 0.2 * 
* * 
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double convert_parse_cpuinfo (double bogomips,char factor!]) { 
/ ******************************************************************** 
Converts the bogomips returned from parse_cpuinfo into a different 
weight.  First argument is the value returned by parse_cpuinfo. 
Second argument establishes how the value should be changed. 

S — based on HINT SHORT metric 
I -- 
L -- 
F -- 
D -- 

25 Nov 98 

27 Nov 98 
29 Nov 98 
31 Dec 98 

based on HINT INT metric 
based on HINT LONGLONG metric 
based on HINT FLOAT metric 
based on HINT DOUBLE metric 
"none of the above" returns bogomips unchanged 
-- This implementation uses an IF-THEN-ELSE construct -- 

future implementations should use a data structure for 
maintainability -- also need to think about how to deal 
with unexpected values (return closest value, inter/extra- 
polate?) 
-- Basic structure; still need to get actual values to 
return 

-- Incorporate numbers for 333MHz & 400MHz Pentium II's 
-- Added a check for 0.0 
-- Removed hard-coded map -- make use of dynamic map 
-- Linearly interpolate between known values if need be 
— Extrapolate as follows: 
— Less than lowest known value, interpolate with zero 

(provided in map) 
-- Greater than largest known value, use largest known 

value (do not extrapolate, especially to with 
infinity :> ) 

******************************************************************** / 

FILE »mipsfile; 
nodeinfo *mipslist; 
int i ; 
double lower,upper,lo,hi,rise,run,diff; 

mipsfile = fopen(filenamel,"r") ; 
if ( mipsfile == NULL ) { 

return bogomips; 
} /* if ( mipsfile == NULL ) */ 
else { 
mipslist = load(mipsfile); 
fclose(mipsfile) ; 

/* File does not exist */ 
/* Default action is no action */ 

/* File does exist */ 

lower = upper = 0.0; i = 0; 
while ( ( upper < bogomips) && ( i < mipslist[0].listsize  ) ) { 

lower = upper; 
upper = mipslist[++i].key; 

} /* while ( ( upper < bogomips )&&(!< mipslist[0].listsize  ) ) */ 

if ( upper == bogomips ) { 
if     ( factor[0]=='S' factor[0]= 
else if ( factor[0]=='I' factor[0]= 
else if ( factor[0]=='L' factor[0]= 
else if ( factor[0]=='F' factor[0]= 
else if ( factor[0]=='D' factor[0]= 
else 

} /* if ( upper == bogomips ) */ 
else { 

if ( i == mipslist[0].listsize ) { 

/* Straight-forward map */ 
=='s' ) return mipslist[i].H_short; 
=='i' ) return mipslist[i].H_int; 
=='1' ) return mipslist[i].H_long; 
=='f' ) return mipslist[i].H_float; 
=='d' ) return mipslist[i].H_double; 

return bogomips; 

/* Need to inference */ 
/* We reached the largest known */ 
/* value and it's too small */ 

if ( factor[0]=='S' factor[0 
else if ( factor[0]=='I' factor[0 
else if ( factor[0]=='L' factor[0 
else if ( factor[0]=='F' factor[0 
else if ( factor[0]=='D' factor[0 
else 

} /* ( i == mipslist[0].listsize ) */ 
else { 
run = upper-lower; 
diff = bogomips-lower; 
if     ( factor[0]=='S' 

]=='s' ) return mipslist[i].H_short; 
]=='i' ) return mipslist[i].H_int; 
]=='1' ) return mipslist[i].H_long; 
]=='f ) return mipslist [i] .H_float,• 
]=='d' ) return mipslist[i].H_double; 

return bogomips; 

/* Interpolate */ 

factor[0]=='s' ) { 
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hi = mipslist[i].H_short; 
lo = mipslist[i-1].H_short; 
rise = hi - lo; 
return fabs(lo+diff*rise/run);    /* fabs() just to be safe */ 

} /* HINT SHORT */ 
else if ( factor[0]=='I' || factor[0]=='i' ) { 

hi = mipslist[i].H_int; 
lo = mipslist[i-1].H_int; 
rise = hi - lo; 
return fabs(lo+diff*rise/run);    /* fabs() just to be safe */ 

} /* HINT INT */ 
else if ( factor[0]=='L' || factor[0]=='1' ) { 

hi = mipslist[i].H_long; 
lo = mipslist[i-1].H_long; 
rise = hi - lo; 
return fabs(lo+diff*rise/run);    /* fabs() just to be safe */ 

} /* HINT LONG */ 
else if ( factor[0]=='F' || factor[0]=='f ) { 

hi = mipslist[i].H_float; 
lo = mipslist[i-1].H_float; 
rise = hi - lo; 
return fabs(lo+diff*rise/run);   /* fabs() just to be safe */ 

} /* HINT FLOAT */ 
else if ( factor[0]=='D' || factor[0]=='d' ) { 

hi = mipslist[i].H_double; 
lo = mipslist[i-1].H_double; 
rise = hi - lo; 
return fabs(lo+diff*rise/run);    /* fabs() just to be safe */ 

} /* HINT DOUBLE */ 
else /* none of the above */ 

return bogomips; 
} /* else ( i < mipslist[0].listsize ) */ 

} /* else ( upper > bogomips ) */ 
} /* else ( mipsfile != NULL ) */ 

} /* convert_jparse_cpuinfo */ 

double convert_calc_pi (double mflops,char factor!]) { 

Converts the mflops returned from calc_pi into a different 
weight.  First argument is the value returned by calc_pi. 
Second argument establishes how the value should be changed. 

S -- based on HINT SHORT metric 
I — based on HINT INT metric 
L — based on HINT LONGLONG metric 
F — based on HINT FLOAT metric 
D — based on HINT DOUBLE metric 

-- "none of the above" returns mflops unchanged 
25 Nov 98 — This implementation uses an IF-THEN-ELSE construct — 

future implementations should use a data structure for 
maintainability — also need to think about how to deal 

with unexpected values (return closest value, inter/extra- 
polate?) 
-- Basic structure; still need to get actual values to 

return 
27 Nov 98 — Incorporate numbers for 333MHz & 400MHz Pentium II's 
29 Nov 98 — Added a check for 0.0 
31 Dec 98 -- Removed hard-coded map -- make use of dynamic map 

-- Linearly interpolate between known values if need be 
-- Extrapolate as follows: 
-- Less than lowest known value, interpolate with zero 

(provided in map) 
— Greater than largest known value, use largest known 

value (do not extrapolate, especially to with 
infinity :> ) 

FILE *flopsfile; 
nodeinfo *flopslist; 
int i ; 
double lower,upper,lo,hi,rise,run,diff; 
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flopsfile  = fopen(filename2,"r") 
if ( flopsfile == NULL ) { 
return mflops; 

} /* if ( flopsfile == NULL ) */ 
else { 

flopslist = load(flopsfile); 
fclose(flopsfile); 

/* File does not exist */ 
/* Default action is no action */ 

/* File does exist */ 

lower = upper = 0.0; i = 0; 
while ( ( upper < mflops) && ( i < flopslist[0].listsize  ) ) { 

lower = upper; 
upper = flopslist[++i].key; 

} /* while ( ( upper < mflops ) && ( i < flopslist[0].listsize  ) ) 

if ( upper == mflops ) { /* Straight-forward map */ 
if     ( factor[0]=='S' factor[0]==' 
else if ( factor[0]=='I' factor[0]==' 
else if ( factor[0]=='L' factor[0]==' 
else if ( factor[0]=='F' factor[0]==' 
else if ( factor[0]=='D' factor[0]==' 
else 

} /* if ( upper == mflops ) */ 
else { 

if ( i == flopslist[0].listsize ) { 

s' ) return flopslist[i].H_short; 
i' ) return flopslist[i].H_int; 
1' ) return flopslist[i].H_long; 
f ) return flopslist[i].H_float; 
d1 ) return flopslist[i].H_double; 

return mflops; 

( factor[0]= 
factor[0]= 
factor[0]= 
factor[0]= 
factor [0] = 

factor[0]== 
factor[0]== 
factor[0]== 
factor[0]== 
factor[0]== 

if 
hi = 
lo = 
rise 

/* 

} 

if 
else if 
else if 
else if 
else if 
else 

} /* ( i == flopslist[0].listsize ) */ 
else { 
run = upper-lower; 
diff = mflops-lower; 

( factort0]=='S' || factor[0] 
flopslist[i].H_short; 
flopslist[i-1].H_short; 
hi - lo; 

return fabs(lo+diff*rise/run 
/* HINT SHORT */ 

else if ( factor[0]=='I' || factor[0]= 
hi = flopslist[i].H_int; 
lo = flopslist[i-1].H_int; 
rise = hi - lo; 
return fabs(lo+diff*rise/run);    /* 

} /* HINT INT */ 
else if ( factor[0]=='L' || factor[0]= 

hi = flopslist[i].H_long; 
lo = flopslist[i-1].H_long; 
rise = hi - lo; 
return fabs(lo+diff*rise/run);    /* 

} /* HINT LONG */ 
else if ( factor[0]=='F' || factor[0]= 

hi = flopslist[i].H_float; 
lo = flopslist[i-1].H_float; 
rise = hi - lo; 
return fabs(lo+diff*rise/run);    /* 

} /* HINT FLOAT */ 
else if ( factor[0]=='D' || factor[0]= 

hi = flopslist[i].H_double; 
lo = flopslist[i-1].H_double; 
rise = hi - lo; 
return fabs(lo+diff*rise/run 

} /* HINT DOUBLE */ 
else /* none of the above */ 

return mflops; 
} /* else ( i < flopslist[0].listsize ) 

} /* else ( upper > mflops ) */ 
/* else ( flopsfile != NULL ) */ 

/* Need to inference */ 
/* We reached the largest known */ 
/* value and it's too small */ 

•s' ) 
•i' ) 
'1' ) 
'f ) 
•d' ) 

return flopslist[i].H_short; 
return flopslist[i].H_int; 
return flopslist[i].H_long; 
return flopslist[i].H_float; 
return flopslist[i].H_double; 
return mflops; 

/* Interpolate */ 

) { 

} 
fabs() just to be safe */ 

= 'i' ) { 

fabs() just to be safe */ 

= 'l" ) { 

fabs() just to be safe */ 

= "f ) { 

fabsO just to be safe */ 

■■•d'   ) { 

/* fabs() just to be safe */ 

} /* convert_calc_pi */ 
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CA. buildmap.c 
#include <math.h> 
#include <stddef.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include "metric.h" 
#include "nodeinfo.h" 

* * 
* PROJECT: Asymmetrie Load Balancing on a Heterogeneous * 
* Cluster of PCs * 
* AFIT/ENG/GE99M-02 * 
* * 

* PACKAGE: NodeMetric * 
* 0.2 * 
* * 
* FILE:   buildmap.c * 
* 0.1 * 
* Builds the maps used by metricmap.c * 
* * 
* AUTHOR:  Capt Christopher A. Bohn * 
* * 
* HISTORY: 28 Dec 98 — Version a.l begun * 
* -- Objective: basic  implementation -- * 
* -- Basic  structure in place -- still * 
* need to get the struct nodeinfo material * 
* working * 
* — Passes the "eges -c buildmap.c" test * 
* --a.l complete * 
* 29 Dec 98 — Version a.2 begun * 
* -- Objective: finish struct nodeinfo-related * 
* material * 
* — Moving the struct nodeinfo definition * 
* from buildmap.c to nodeinfo.h * 
* -- metricmap.c will also need it * 
* -- a.2 complete * 
* -- Version a.3 begun * 
* -- Objective: write front-end * 
* -- a.3 complete; won't declare Version 0.1 until* 
* I write load() & save() (in another file) * 
* -- for that matter, I still gotta test * 
* 30 Dec 98 -- Version a. 4 begun * 
* -- Objective: cleaning-up / deobfuscation * 
* -- a.4 complete * 
* -- The bloody thing compiles & links (woo-hoo!),* 
* but for initial testing, I'm going to disable* 
* the HINT portion, since they, urn, take a * 
* really, really long time * 
* -- Yee-haw!  Core dump.  Debugging time. * 
* 31 Dec 98 -- Version a.5 begun * 
* -- Objective: fix bar() right after I fix * 
* foo() * 
* -- I must really need a good night's * 
* sleep ... there's a big problem with * 
* the data structure * 
* — I'm going to recode this as a linear * 
* list (for now) ... it's a VERY simple * 
* data structure, and for my initial * 
* tests, at least, the time-complexity * 
* (for small 'n') of 0(n) should be * 
* unappreciable * 
* -- a.5 complete * 
* -- Still trying to track down that segmentation * 
* fault * 
* are now written identically, and improperly * 
* -- Doh!  I'm allocating memory for the lists * 
* in the wrong part of the program! * 
* -- Move preload 0 into loadO & allocate * 
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* there * 
* — buildmap.c 0.1 * 
* -- NodeMetric 0.1.2 * 
* 1 Jan 99 -- NodeMetric 0.2 * 
* * 

void initialize (nodeinfo **); 
void add_node (nodeinfo **, nodeinfo); 
int compare (void *, void *); 

#define min(x,y)  (((x)<(y))?(x):(y)) 
#define max(x,y)  (((x)>(y))?(x):(y)) 

int main () { 
FILE *mipsfile,*flopsfile; 
nodeinfo *mipslist,*flopslist; 
nodeinfo mipsnode,flopsnodelo,flopsnodehi; 
double H_short,H_int,H_long,H_float,H_double; 
time_t timel,time2; 
int i; 
double pi,mflops; 

mipsfile = fopen(filenamel,"r"); 
flopsfile = fopen(filename2,"r") ; 
if ( ( mipsfile == NULL ) || ( flopsfile == NULL ) ) { 

initialize(Smipslist); /* Files do not exist */ 
initialize(Sflopslist); 

} /* if ( ( mipsfile == NULL ) || ( flopsfile == NULL ) ) */ 
else { /* Files do exist */ 
mipslist    = load(mipsfile); 
flopslist   = load(flopsfile); 
fclose(mipsfile);fclose(flopsfile); 

} /* else ( ( mipsfile != NULL ) && ( flopsfile != NULL ) ) */ 

/* assess current node */ 
timel = time(NULL); 
mipsnode.key = parse_cpuinfo(); 
time2 = time(NULL),• 
printf("%d sec required to read bogomips.\n", 

(int)difftime(time2,timel)); 
flopsnodelo.key = 1000000.0; /* initialize for max/min */ 
flopsnodehi.key =      0.0; /* initialize for max/min */ 
for ( i = 21 ; i < 28 ; i++) { 

timel = time(NULL); 
mflops = calc_pi(pow(2,i),&pi); 
time2 = time(NULL); 
flopsnodelo.key = min(flopsnodelo.key,mflops); 
flopsnodehi.key = max(flopsnodelo.key,mflops); 
printf("%d sec required to calculate pi at precision level %d.\n", 

(int)difftime(time2,timel),i); 
} /* for i */ 
printf ("« Starting HINT SHORT benchmark >>\n"); 
timel = time(NULL); 
H_short  = run_hint("SHORT"); 
time2 = time(NULL); 
printf("%fmin required to complete HINT SHORT benchmark.\n", 

difftime(time2,timel)/60.0); 
printf ("« Starting HINT INT benchmark >>\n"); 
timel = time(NULL); 
H_int    = run_hint("INT"); 
time2 = time(NULL); 
printf("%fmin required to complete HINT INT benchmark.\n", 

difftime(time2,timel)/60.0); 
printf ("« Starting HINT LONG benchmark >>\n"); 
timel = time(NULL),- 
H_long   = run_hint("LONG"); 
time2 = time(NULL); 
printf("%fmin required to complete HINT LONG benchmark.\n", 

difftime(time2,timel)/60.0); 
printf ("« Starting HINT FLOAT benchmark >>\n"); 
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timel = time(NULL); 
H_float  = runjnint("FLOAT"); 
time2 = time(NULL); 
printf("%fmin required to complete HINT FLOAT benchmark.\n", 

difftime(time2,timel)/60.0); 
printf ("« Starting HINT DOUBLE benchmark >>\n"); 
timel = time(NULL); 
H_double = run_hint("DOUBLE"); 
time2 = time(NULL); 
printf("%fmin required to complete HINT DOUBLE benchmark.\n", 

difftime(time2,timel)/60.0); 
mipsnode.H_short = flopsnodelo.H_short  = flopsnodehi.H_short  = H_short; 
mipsnode.H_int   = flopsnodelo.H_int   = flopsnodehi.H_int   = H_int; 
mipsnode.H_long  = flopsnodelo.H_long  = flopsnodehi.H_long  = H_long; 
mipsnode.H_float = flopsnodelo.H_float  = flopsnodehi.H_float = H_float; 
mipsnode.H_double = flopsnodelo.H_double = flopsnodehi.H_double = H_double; 

/* add info on current node to lists */ 
add_node(&mipslist,mipsnode); 
add_node(&flopslist,flopsnodelo); 
add_node(&flopslist,flopsnodehi); 

mipsfile = fopen(filenamel,"w"); 
flopsfile = fopen(filename2,"w"); 
save(mipsfile,mipslist) ; 
save(flopsfile,flopslist); 
fclose(mipsfile);fclose(flopsfile); 

return 0; 
} /* main!) */ 

void initialize (nodeinfo *A[]) { 
(*A) = calloc(3,sizeof(nodeinfo)) ; 
(*A)[0].listsize = 0; 
(*A)[0].key = 0.0; 
(*A)[0].H_short  = 0.0; 
(*A)[0].H_int    = 0.0; 
(*A)[0].H_long   = 0.0; 
(*A)[0].H_float  = 0.0; 
(*A)[0].H_double = 0.0; 

} /* initialize!) */ 

void add_node (nodeinfo *A[], nodeinfo node) { 
int listsize = (*A)[0].listsize + 1; 
(*A)[listsize] = node; 
qsort((*A), (listsize+1), sizeof(nodeinfo), compare); 
(*A)[0].listsize = listsize; 

} /* add_node() */ 

int compare (void *va, void *vb) { 
/* was going to just return *a.key-*b.key, but that's a real, so then I 

was going to return (int)(*a.key-*b.key), but the truncation of 0.x or 
-0.x would provide invalid results, so... */ 

nodeinfo *a=va, *b=vb; 
return (((*a).key< (*b).key) ? -1 : (((*a).key> (*b).key) ? 1 : 0)); 

} /* compare() */ 

163 



C.5. nodeinfo.h 
#include <stddef.h> 
#include <stdio.h> 
#include <stdlib.h> 

* * 
* PROJECT: Asymmetric Load Balancing on a Heterogeneous * 
* Cluster of PCs * 
* AFIT/ENG/GE99M-02 * 
* * 
* PACKAGE: NodeMetric * 
* 0.2 * 
* * 
* FILE:   nodeinfo.h * 
* 0.1 * 
* Key parts for obtaining & storing node metric information * 
* * 

* AUTHOR:  Capt Christopher A. Bohn * 
* * 
* HISTORY: 28 Dec 98 — buildmap.c a.l has struct nodeinfo * 
* 29 Dec 98 — Version a.l begun * 
* — Objective: finish struct nodeinfo * 
* definition * 
* -- Moved the struct nodeinfo definition from * 
* buildmap.c to nodeinfo.h * 
* -- metricmap.c will also need it * 
* -- Prototyped load() & save() * 
* — a.l complete * 
* 30 Dec 98 — Version a.2 begun * 
* -- Objective: write load() & save() * 
* — a.2 complete * 
* 31 Dec 98 — Version a.2.1 begun * 
* -- Objective:  rename nodeinfo.heapsize to  * 
* nodeinfo.listsize * 
* — a.2.1 complete * 
* -- nodeinfo.h 0.1 * 
* -- NodeMetric 0.1.2 * 
* 1 Jan 99 -- NodeMetric 0.2 * 
* * 

#define filenamel "ABC_MIPS.dat" 
#define filename2 "ABC_FLOPS.dat" 

typedef struct { 
double key;     /* This would be either bogomips or mflops*/ 
double H_short; /* The values generated by HINT */ 
double H_int; 
double H_long; 
double H_float; 
double H_double; 
int listsize;   /* only used in the 0th element of the array */ 

} nodeinfo; 

nodeinfo *load(FILE *); 
void save(FILE *,nodeinfo *) ; 

nodeinfo »load(FILE *infile) { 
/••A***************************************************************** 

Reads the linear list stored in infile.  Actually, it'll read in any 
array, so long as the elements of the array are struct nodeinfo's, 
and the listsize attribute of the first element indicates how many 
more elements there are. 
29 Dec 98 — prototyped 
3 0 Dec 98 -- coded 
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31 Dec 98 -- tweaked 

nodeinfo *A,B; 
int i; 
char line[31] = ""; 

fscanf(infile,"%s",line); 
B.key = atof(line); 
fscanf(infile,"%s",line); 
B.H_short = atof(line); 
fscanf(infile,"%s",line); 
B.H_int = atof(line); 
fscanf(infile,"%s",line); 
B.H_long = atof(line); 
fscanf(infile,"%s",line) ; 
B.H_float = atof(line); 
fscanf(infile,"%s",line); 
B.H_double = atof(line); 
fscanf(infile,"%s",line) ; 
B.listsize = atoi(line); 

A = calloc(B.listsize+3,sizeof(nodeinfo));/* Why +3?  Because +1 for the */ 
A[0] = B; /* Oth element, and +2 because */ 

/* buildmap will add up to two */ 
for ( i = 1 ; i <= A[0].listsize ; i++ ) {/* elements */ 

fscanf(infile,"%s",line); 
A[i].key = atof(line); 
fscanf(infile,"%s",line) ; 
A[i].H_short = atof(line); 
fscanf(infile,"%s",line) ; 
A[i].H_int = atof(line); 
fscanf(infile,"%s",line); 
A[i].H_long = atof(line); 
fscanf(infile,"%s",line) ; 
A[i].H_float = atof(line); 
fscanf(infile,"%s",line) ; 
A[i].H_double = atof(line); 
fscanf(infile,"%s",line) ; 
A[i].listsize = atoi(line); 

} /* for i */ 

return A; 
} /* loadO */ 

void save(FILE *outfile, nodeinfo A[]) { 

Writes the linear list to outfile. 
29 Dec 98 -- prototyped 
3 0 Dec 98 -- coded 
31 Dec 98 -- tweaked 

a*******************************************************************/ 

int i; 
for ( i = 0 ; i <= A[0].listsize ; i++ ) { 

fprintf(outfile,"%e\n",A[i].key); 
fprintf(outfile,"%e\n",A[i].H_short); 
fprintf(outfile,"%e\n",A[i].H_int); 
fprintf(outfile,"%e\n",A[i].H_long); 
fprintf(outfile,"%e\n",A[i].H_float); 
fprintf(outfile,"%e\n",A[i].H_double); 
fprintf(outfile,"%d\n",A[i].listsize) ; 

} /* for i */ 
} /* saved */ 
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C.6. Makefile 
####################################################################### 
# # 
# PROJECT: Asymmetric Load Balancing on a Heterogeneous # 
# Cluster of PCs # 
# AFIT/GE/ENG/99M-02 # 
# # 
# PACKAGE: NodeMetric # 
# 0.2 # 
# # 
# FILE:   metric/Makefile # 
#0.2 # 
# # 
# AUTHOR:  Capt Christopher A. Bohn # 
# # 
# HISTORY: 29 Nov 98 — NodeMetric Version 0.1 # 
# 10 Dec 98 -- Version a.l begun # 
# -- Objective: make all object files # 
# --a.l complete # 
# 11 Dec 98 — Version a.2 begun # 
# — Objective: make HINT, too # 
# -- a.2 complete # 
# -- metric/Makefile Version 0.1 # 
# -- NodeMetric 0.1.1 # 
# 29 Dec 98 — Version 0.2 begun # 
# -- Objective: make buildmap # 
# — metric/Makefile 0.2 # 
# 31 Dec 98 — NodeMetric 0.1.2 # 
# 1 Jan 99 — NodeMetric 0.2 # 
M # 

####################################################################### 

### Begin user configurable options ### 

CC = egcs 
LINKER = egcs 
OPTFLAGS    = -03 

HINTCC     = gcc 
# HINT may not like your normal compiler 

HINTDIR    = ./hint 
# Location of HINT source files 

BINDIR     = /home/cbohn/thesis/NPB-mod2/bin 
# Where your application is located; HINT will be 

# placed /below/ this dir 

### End user configurable options  ### 

EXECS      = buildmap 
OBJS       = metric.o metricmap.o weighnode.o 

default: $(OBJS) 

all: $(OBJS) $(EXECS) 

buildmap: buildmap.o metric.o 
$(LINKER) $(OPTFLAGS) -o buildmap buildmap.o metric.o -lm 

buildmap.o: buildmap.c metric.h nodeinfo.h 

metric.o: metric.c 

metricmap.o: metricmap.c nodeinfo.h 

weighnode.o: weighnode.c metric.h metricmap.h 

HINT: 
@ cd $(HINTDIR); make CC=$(HINTCC) CFLAGS=$(OPTFLAGS) 
@- mkdir $(BINDIR)/hint 
@ mv $(HINTDIR)/SHORT    $(BINDIR)/hint 
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mv $(HINTDIR)/INT 
mv $(HINTDIR)/LONGLONG 
mv $(HINTDIR)/FLOAT 
mv $(HINTDIR)/DOUBLE 

$(BINDIR)/hint 
$(BINDIR)/hint 
$(BINDIR)/hint 
$(BINDIR)/hint 

help: 
@ echo 
@ echo 
@ echo 
@ echo 
@ echo 
@ echo 
@ echo 
@ echo 

Options are: 
metric.o" 
metricmap.o" 
weighnode.o" 
HINT" 
all" 
clean" 
veryclean" 

(default is *.o) (all is buildmap & *.o)' 

clean: 
-f core *.o 

veryclean: clean 
@- rm -f hint/core hint/*.o hint/*- 

$(CC)    $(OPTFLAGS)    -C   $*.C 
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Appendix D: Tabulated Raw Results 

This appendix contains the raw data for the charts presented in Chapter iv. 

Performance figures are in Section D.l (Table D-l through Table D-3). Cells in the tables 

for which no corresponding data was collected are shaded gray. 

The sizes of the partitions generated by the different weighting approaches are 

listed in Section D.2 (Table D-4 through Table D-l8). The tables list the width of the 

column-striped partitions before asymmetric load balancing is introduced. For each of the 

three weightings (BogoMIPS, Mflops, and QUIPS), the tables include the weight for each 

node, the "fair share" partition size based on the reported weights before rounding and 

corrections, and the final tile width for each node. 

Finally, Section D.3 (Table D-l9) contains performance data collected during 

development, and not as a part of formal experimentation. It is included because it is 

relevant to Section 4.6.1. 
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D. 
Tab 

1. Performance 
e D-l. Non-load balanced performance - power-of-two number of processors. 

1 processor 2 processor 4 processor 8 processor 
1x200 

1x333 
1x400 

1x450 

1x20(1 

1x450 

1x333 

1x450 
1x400 
1x450 

1x200 
1x333 
1x400 
1x450 

1x333 
2x400 
1x450 

3x400 
1x450 

1x200 
1x333 
5x400 
1x450 

1x333 
6x400 
1x450 

Unbal 

Chkbd 

0.81 
nan 

2.96 
nan 

3.54 
nan 

3.94 
nan 

38.42 84.01 112.39 7.27 
nan 

11.00 
nan 

13.14 
nan 

141.94 344.55 

2.96 
nan 

3.54 
nan 

3.96 
nan 

7.28 
nan 

158.59 346.79 

2.96 
nan 

3.54 
nan 

3.96 
nan 

7.28 
nan 

160.07 347.13 

2.96 
nan 

3.54 
nan 

3.96 
nan 

7.28 
nan 

160.34 347.49 

2.96 
nan 

3.54 
nan 

3.96 
nan 

connectn 
timed out 

160.52 348.92 

3.96 
nan 

3.96 
nan 

3.96 
nan 

3.96 
nan 

3.96 
nan 

Unbal 

Row 
Striped 

60.08 163.57 
60.09 167.49 
60.13 174.72 
60.15 174.8 
60.17 174.88 

Unbal 
Col 
Striped 

42.7 55.15 59.99 38.37 84.93 101.44 76.14 153.95 170.99 166.75 14h« 

42.7 55.55 60.05 38.5 85.42 112.23 76.63 165.07 171.45 169.71 353.61 
42.7 55.57 60.05 38.52 86.69 112.27 76.87 165.13 171.95 170.05 364.21 

42.71 55.62 60.05 38.54 86.7 112.35 77.96 165.22 172.06 174.86 367.98 
42.71 55.66 60.08 38.76 86.78 112.53 77.97 165.39 172.43 175.15 370.35 

60.12 
60.12 
60.12 
60.13 
60.13 
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Table D-2. Load balanced performance - power- of-two number of processors. 
1 processor 2 processor 4 processor 8 processor 

1x200 
1x333 

1x400 
1x450 

1x200 

1x450 

1x333 

1x450 
1x400 
1x450 

1x200 
1x333 
1x400 
1x450 

1x333 
2x400 
1x450 

3x400 
1x450 

1x200 
1x333 
5x400 
1x450 

1x333 
6x400 
1x450 

Equal 
Weight 
RwStr 

1.75 
1.76 
1.77 

Equal 
Weight 
Col 

Striped 

36.32 63.73 82.29 75.08 159.33 164.88 152.25 307.76 
36.89 68.15 92.09 75.1 159.48 164.88 160.33 312.32 
36.94 69.09 92.1 75.34 159.48 165.08 164.67 312.73 
36.95 70.34 92.29 75.45 159.75 165.23 165.32 312.88 
36.98 71.88 92.47 75.99 159.88 165.27 165.7 313.18 

Bogo 

MIPS 

Col 

Striped 

65.71 80.24 96.27 125.43 156.61 164.08 220.02 294.19 
65.79 81.09 96.36 125.45 156.7 164.42 267.2 299.93 

65.8 84.96 96.47 125.46 156.78 164.82 267.54 300.84 
65.85 84.97 96.52 125.47 156.91 165.26 267.65 300.94 
65.88 84.98 96.55 125.48 165.77 165.59 268.8 301.9 

Mflops 

Col 
Striped 

70.24 78 96.5 131.83 158.3 165.85 201.72 291.85 
71.03 82.38 96.51 131.87 158.3 166.3 240.26 295.46 
71.06 85.01 96.55 131.93 158.37 166.55 264.84 296.21 
71.07 85.15 96.71 132.23 158.41 167.13 265.84 296.27 

71.1 85.17 96.72 134.26 158.45 167.15 265.97 299.38 
QUIPS 
Col 
Striped 

63.93 69.75 96.97 142.64 159.51 179.07 254.39 307.78 
63.93 79.53 97.01 142.66 163.35 179.4 282.83 319.87 
63.94 82.14 97.02 142.83 164.29 179.41 284.28 329.99 
63.95 86.4 97.05 142.9 164.73 180.23 284.78 330.13 
63.95 86.43 97.11 142.91 164.74 181.36 285.57 331.05 
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Table D-3. Load balanced & non-load balanced 
performance - non-power-of-two number of processors. 

3 
processor 

7 
processor 

9 
processor 

10 
processor 

11 
processor 

12 
processor 

1x333 
1x400 
1x450 

1x333 
5x400 
1x450 

1x200 
1x333 
5x400 
1x450 

2x333 
6x400 
1x450 

1x200 
3x333 
6x400 
1x450 

4x333 
6x400 
1x450 

1x21» 
4x333 
6x400 
1x450 

Unbal 

Col 
Striped 

121.09 293.64 122.26 96.39 123.11 117.86 259.99 

121.15 297.1 188.81 119.3 124.11 120.15 264.3 

121.16 298.28 278.96 167.37 213.49 122.35 269.26 

121.22 299.87 290.61 318.3 230.92 132.77 275.63 

121.22 301.34 317.44 347.32 257.27 211.18 280.43 

Equal 
Weight 
Col 

Striped 

126.26 269.21 198.47 105.95 118.71 109.91 77.01 

126.26 272.27 243.63 162.19 131.16 118.09 78.24 

126.38 274.36 255.87 196.32 131.27 127.75 102.81 

126.4 275.12 256.79 254.03 168.28 135.1 108.06 

126.61 276.87 280.72 295.09 175.44 273.85 109.94 

Bogo 

MIPS 
Col 
Striped 

126.7 248.07 235.69 134.41 120.64 59.74 127.5 

126.86 271.21 256.91 264.25 133.08 99.7 168.87 

126.92 271.23 308.09 264.69 166.42 141.23 171.7 

126.95 271.95 317.38 276.99 204.18 182.98 176.21 

126.98 272.5 321.39 298.71 211.22 341.76 235.77 

Mflops 

Col 
Striped 

125.76 256.26 217.29 146.76 158.83 85.8 127.37 

126.09 266.82 229.28 149.48 204.25 252.25 147.61 

126.37 270.84 258.54 151.42 216.18 304.83 156.58 

126.4 271.34 273.35 277.54 223.76 334.77 159.17 

127.24 272.29 274.17 334.84 318.17 344.89 229.04 

QUIPS 
Col 
Striped 

133.31 275.26 232.54 131.95 116.04 85.21 102.42 

133.84 289.51 311.23 135.6 122.78 133.81 145.63 

134.31 291.77 331.31 136.58 125.8 276.51 152.31 

134.53 292.31 331.55 206.91 178.6 340.42 169.05 

134.86 295.13 347.72 251.68 200.34 342.54 267.83 

D.2. Partitioning 

Table D-4. Two-processor partitioning (1x200 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 

Weight Suggest'n Part'n Weight Suggest' n Part'n Weight Suggest'n Part'n 

ABC 11 32 445.64 54.29358 54 71.9 49.7309 50 16148280 49.95508 50 

ABC12 32 79.67 9.706421 10 20.63 14.2691 14 4540104 14.04492 14 

Table D-5. Two- processor partitioning (1x333 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 

Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n 

ABC03 32 332.6 27.35197 27 54.71 27.65532 28 12153570 27.48331 27 

ABC11 32 445.64 36.64803 37 71.9 36.34468 36 16148280 36.51669 37 

Table D-6. Two-processor partitioning (1x400 1x450) 
Original 
Partition 

BogoMIPS Mflops QUIPS 

Weight Suggest' n Part'n Weight Suggest'n Part'n Weight Suggest' n Part'n 

ABC09 32 396.49 30.13235 30 64.53 29.80816 30 14875540 30.68721 31 

ABC11 32 445.64 33.86765 34 74.02 34.19184 34 16148280 33.31279 33 
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Table D-7. Three-processor partitioning (1x333 1x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest' n Part'n 

ABC03 22 332.6 18.12025 18 53.54 18.03737 18 12153570 18.01472 18 

ABC09 21 396.49 21.60101 22 64.53 21.73985 22 14875540 22.04938 22 

ABC11 21 445.64 24.27874 24 71.9 24.22277 24 16148280 23.93591 24 

Table D-8. Four-processor partitioning (1x200 1x333 1x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n 

ABC03 16 332.6 16.96939 17 53.54 16.42567 16 12153570 16.3007 16 

ABC09 16 396.49 20.22908 20 64.53 19.79733 20 14875540 19.95148 20 

ABC11 16 445.64 22.73673 23 69.91 21.44787 22 16148280 21.65851 22 

ABC12 16 79.67 4.064796 4 20.63 6.329131 6 4540104 6.089311 6 

Ta ble D-9. Four-processor partitioning (1x333 2x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest' n Part'n Weight Suggest'n Part'n 

ABC03 16 332.6 13.54769 14 55.92 14.04088 14 12153570 13.39861 13 
ABC06 16 396.49 16.1501 16 64.53 16.20275 16 14875540 16.39942 16 
ABC09 16 396.49 16.1501 16 64.53 16.20275 16 14875540 16.39942 16 
ABC11 16 445.64 18.15211 18 69.91 17.55361 18 16148280 17.80255 19 

r Iable D-10. Four-processor partitioning (3x40( ) 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n 

ABC06 16 396.49 15.51905 15 64.53 15.77028 16 14875540 15.66493 15 
ABC07 16 396.49 15.51905 16 64.53 15.77028 16 14875540 15.66493 16 
ABC08 16 396.49 15.51905 16 62.91 15.37437 15 14875540 15.66493 16 
ABC11 16 445.64 17.44284 17 69.91 17.08508 17 16148280 17.00521 17 

Table D-ll. Seven-processor partitioning (1x333 6x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n 

ABC03 10 332.6 7.710536 8 53.54 7.702731 8 12153570 7.575301 8 
ABC05 9 396.49 9.191673 9 62.91 9.050781 9 14875540 9.2719 9 
ABC06 9 396.49 9.191673 9 64.53 9.283848 9 14875540 9.2719 9 
ABC07 9 396.49 9.191673 9 64.53 9.283848 9 14875540 9.2719 9 
ABC08 9 396.49 9.191673 9 62.91 9.050781 9 14875540 9.2719 9 
ABC09 9 396.49 9.191673 9 64.53 9.283848 9 14875540 9.2719 9 
ABC11 9 445.64 10.3311 11 71.9 10.34416 11 16148280 10.0652 11 
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Table D-12. Eight-processor partitioning (1x200 1x333 5x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 

Weight Suggest'n Part'n Weight Suggest' n Part'n Weight Suggest'n Part'n 

ABC03 8 332.6 7.494261 5 53.54 7.313115 5 12153570 7.254533 5 

ABC05 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9 

ABC06 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9 

ABC07 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9 

ABC08 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9 

ABC09 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9 

ABC11 8 445.64 10.04132 10 71.9 9.820937 10 16148280 9.638997 10 

ABC12 8 79.67 1.795153 4 20.46 2.794664 4 4540104 2.710013 4 

Table D-13. Eight-processor partitioning (1x333 6x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 

Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n 

ABC03 8 332.6 6.742219 7 53.54 6.705597 7 12153570 6.616715 7 

ABC05 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8 

ABC06 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8 

ABC07 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8 

ABC08 8 396.49 8.03735 8 62.91 7.879139 8 14875540 8.098625 8 

ABC09 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8 

ABC10 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8 

ABC11 8 445.64 9.033682 9 71.9 9.005088 9 16148280 8.791537 9 

Table D-14. Nine-processor partitioning (2x333 6x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest' n Part'n 

ABC02 8 332.6 6.09964 6 53.54 6.078479 6 12153570 5.996735 6 

ABC03 7 332.6 6.09964 6 54.71 6.211311 6 12153570 5.996735 6 

ABC05 7 396.49 7.271335 7 64.53 7.32619 7 14875540 7.339792 7 

ABC06 7 396.49 7.271335 7 62.91 7.142269 7 14875540 7.339792 7 

ABC07 7 396.49 7.271335 7 64.53 7.32619 7 14875540 7.339792 7 

ABC08 7 396.49 7.271335 7 64.53 7.32619 7 14875540 7.339792 7 

ABC09 7 396.49 7.271335 7 64.53 7.32619 7 14875540 7.339792 7 

ABC10 7 396.49 7.271335 8 64.53 7.32619 8 14875540 7.339792 8 

ABC11 7 445.64 8.17271 9 69.91 7.93699 9 16148280 7.967779 9 

Ta We D-15 . Ten-processor partitioning (3x333 6x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n 

ABC01 7 332.6 5.568886 5 54.71 5.68748 5 12153570 5.482985 5 
ABC02 7 332.6 5.568886 5 53.54 5.56585 5 12153570 5.482985 5 
ABC03 7 332.6 5.568886 5 53.54 5.56585 5 12153570 5.482985 5 
ABC05 7 396.49 6.638628 7 62.91 6.539926 7 14875540 6.71098 7 
ABC06 6 396.49 6.638628 7 64.53 6.708336 7 14875540 6.71098 7 
ABC07 6 396.49 6.638628 7 64.53 6.708336 7 14875540 6.71098 7 
ABC08 6 396.49 6.638628 7 62.91 6.539926 7 14875540 6.71098 7 
ABC09 6 396.49 6.638628 7 64.53 6.708336 7 14875540 6.71098 7 
ABC10 6 396.49 6.638628 7 64.53 6.708336 7 14875540 6.71098 7 
ABC11 6 445.64 7.461571 7 69.91 7.267624 7 16148280 7.285166 7 
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Table D-16. Eleven-processor partitioning (1x200 3x333 6x400 1x450) 
Original 
Partition 

BogoMIPS Mflops QUIPS 

Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n 

ABC01 6 332.6 5.455184 4 54.71 5.465193 4 12153570 5.312951 4 

ABC02 6 332.6 5.455184 4 54.71 5.465193 4 12153570 5.312951 4 

ABC03 6 332.6 5.455184 4 53.54 5.348317 5 12153570 5.312951 4 

ABC05 6 396.49 6.503084 6 64.53 6.446151 6 14875540 6.502865 6 

ABC06 6 396.49 6.503084 7 64.53 6.446151 6 14875540 6.502865 7 

ABC07 6 396.49 6.503084 7 64.53 6.446151 6 14875540 6.502865 7 

ABC08 6 396.49 6.503084 7 64.53 6.446151 7 14875540 6.502865 7 

ABC09 6 396.49 6.503084 7 64.53 6.446151 7 14875540 6.502865 7 

ABC10 6 396.49 6.503084 7 64.53 6.446151 7 14875540 6.502865 7 

ABC11 5 445.64 7.309225 7 69.91 6.98358 8 16148280 7.059245 7 

ABC12 5 79.67 1.306718 4 20.63 2.06081 4 4540104 1.984713 4 

Tab e D-17. Eleven-processor partitioning (4x333 6x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n 

ABC01 6 332.6 5.123105 5 53.54 5.117095 5 12153570 5.050316 5 

ABC02 6 332.6 5.123105 5 53.54 5.117095 5 12153570 5.050316 5 

ABC03 6 332.6 5.123105 5 53.54 5.117095 5 12153570 5.050316 5 
ABC04 6 332.6 5.123105 5 53.54 5.117095 5 12153570 5.050316 5 
ABC05 6 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6 

ABC06 6 396.49 6.107216 6 62.91 6.012634 6 14875540 6.181408 6 

ABC07 6 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6 

ABC08 6 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6 

ABC09 6 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6 

ABC10 5 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6 

ABC 11 5 445.64 6.864283 8 69.91 6.68166 8 16148280 6.710285 8 

Table D-18. Twelve-processor partitioning (1x20 0 4x33 3 6x400 1x450). 
Original 
Partition 

BogoMIPS Mflops QUIPS 
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest n Part'n 

ABC01 6 332.6 5.02672 4 53.54 4.963727 4 12153570 4.905705 4 
ABC02 6 332.6 5.02672 4 53.54 4.963727 4 12153570 4.905705 4 

ABC03 6 332.6 5.02672 4 54.71 5.072198 5 12153570 4.905705 4 

ABC04 6 332.6 5.02672 5 52.43 4.860818 5 12153570 4.905705 5 
ABC05 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6 
ABC06 5 396.49 5.992316 6 62.91 5.832426 6 14875540 6.004409 6 
ABC07 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6 
ABC08 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6 
ABC09 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6 
ABC 10 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6 
ABC11 5 445.64 6.73514 7 69.91 6.4814 6 16148280 6.518142 7 
ABC12 5 79.67 1.204085 4 20.63 1.91262 4 4540104 1.832582 4 
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D.3. Additional Results Obtained During Development 

Table D-19. Results collected during development, using NPB-serial, hub, and 
switch. All processors are 400 MHz Pentium IIs. 

NBP-serial 
1 processor 

hub switch 
2 processor 

hub                    switch 
4 processor 

hub                    switch 

Unbal 
Chkbd 

38.71 49.06 48.97 96.88 96.09 176.92 181.84 

38.73 49.17 49.16 96.99 96.10 178.67 181.87 

38.78 49.21 49.19 97.05 96.11 178.68 181.87 

Unbal 
Row 
Striped 

48.82 95.38 

Bi^^ü^ 

172.85 

48.95 95.39 173.14 

49.00 95.40 173.17 

Unbal 
Col 
Striped 

48.77 96.12 171.21 

48.78 96.13 171.79 
48.79 96.14 173.14 
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